A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The ZnO-SiO Composite Phase with Dual Regulation Function Enables Uniform Zn Flux and Fast Zinc Deposition Kinetics Toward Zinc Metal Batteries. | LitMetric

As an important candidate for rechargeable energy storage devices, the large-scale development of aqueous zinc ion batteries has been hindered by hydrogen evolution and uncontrollable dendrites of metal anodes. A novel ZnO-SiO composite interface phase (Zn@ZSCP) with a double protective effect based on in situ synthesis by hydrothermal method is used to improve these difficulties. The hydrophilic SiO layer is beneficial to the dissolution of hydrated zinc ions and reduces the nucleation barrier during zinc deposition, while the stable ZnO layer helps to adjust the electric field distribution on the surface of the metal anode to further induce uniform zinc nucleation. The cycle life of the Zn@ZSCP||Zn@ZSCP symmetric battery based on this innovative interface phase modification is up to 2500 h. Even at a high current density of 8 mA cm, the symmetric battery still has a stable cycle life of more than 2000 h. The zinc-iodine full battery based on Zn@ZSCP anode and low-cost biomass-derived porous carbon exhibits an excellent specific capacity and outstanding cycle stability. This simple and reasonable battery structure design not only improves the practicability of aqueous zinc ion batteries to a certain extent but also helps to develop more efficient and environmentally friendly zinc metal batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202411995DOI Listing

Publication Analysis

Top Keywords

zno-sio composite
8
zinc
8
zinc deposition
8
zinc metal
8
metal batteries
8
aqueous zinc
8
zinc ion
8
ion batteries
8
interface phase
8
cycle life
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!