AI Article Synopsis

  • Widespread interest in nanoscale pillar structures for optical devices faces challenges like high equipment costs and limited scalability due to traditional manufacturing methods.
  • The study introduces a novel technique using thermally assisted nanotransfer printing to create highly uniform nanoscale pillar arrays, achieving an impressive density of 0.1 tera-pillars per square inch.
  • These nanopillars are demonstrated as effective surface-enhanced Raman scattering sensors, providing consistent performance and sensitivity at very low concentrations while maintaining durability for multiple uses.

Article Abstract

Despite widespread interest in nanoscale pillar structures for various optical devices, including solar cells, photonic crystal lasers, and sensors, the critical challenges for mass production are the high equipment costs and limited scalability of traditional manufacturing methods. To overcome these hurdles, this study develops a simple and highly scalable etch-mask superposition technique based on thermally assisted nanotransfer printing (T-nTP) of Cr line patterns. The orthogonal superposition of linear Cr mask patterns creates double-height cross-point arrays that effectively and selectively protect the underlying SiO during subsequent reactive ion etching. This process generates highly uniform nanoscale pillar arrays with an extremely high density of 0.1 tera-pillars per square inch, eliminating the need for high-cost patterning platforms. As an exemplary application, we demonstrate the use of these perfectly ordered nanopillar arrays as high-performance surface-enhanced Raman scattering (SERS) sensors through the deposition of noble metal films on the nanopillar surface. These nanopillars enable exceptionally uniform SERS intensity with spot variations of less than 7% in methylene blue (MB) measurements. Additionally, they exhibit sensitive detections and accurate quantification for thiabendazole (TBZ) at concentrations as low as 10 M, along with multicycle reusability without noticeable degradation, owing to the outstanding robustness of the SiO nanopillars.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c15062DOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
nanoscale pillar
8
realizing square-ordered
4
square-ordered nanopillars
4
nanopillars 01-tera-density
4
01-tera-density superimposed
4
superimposed masking
4
masking strategy
4
strategy advanced
4
advanced surface-enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!