AI Article Synopsis

  • PEC water splitting for hydrogen generation shows promise for solving environmental and energy issues, but improved methods are needed.
  • Researchers explore single atom Co-N coordinated with 5-fluoroanthranilic acid (FAA) as a non-covalent hole-extracting layer on a BiVO substrate to enhance PEC performance.
  • Their experiments indicate that this coordination reduces charge transfer barriers and significantly increases photocurrent density, demonstrating a novel approach to improve PEC water oxidation efficiency.

Article Abstract

Photoelectrochemical (PEC) water splitting for hydrogen generation holds immense potential for addressing environmental and energy crises. Tailoring non-covalent interaction via a single atom is anticipated to realize prominent hole extracting facilitating PEC performance, but it has never been reported. In this study, single atom Co-N is coordinated with 5-fluoroanthranilic acid (FAA) molecules, then used as a non-covalent hole-extracting layer on a BiVO substrate. Experiments including X-ray absorption fine spectra, Kelvin probe force microscopy, transient absorption, and theoretical calculation demonstrate the FAA coordination alters the local configuration of the central Co atom, adjusting the interfacial non-covalent interaction, thereby reducing the barrier of charge transfer between BiVO and the hole-extracting layer. Consequently, photogenerated carriers are more effectively separated, and the PEC water oxidation performance is significantly enhanced with the photocurrent density of 5.47 mA cm at 1.23 V versus RHE, much higher than those of previously reported BiVO photoanodes composited with porphyrin-based compounds. Experiments and theoretical simulation confirm that the boosted PEC performance originates from exceptional interfacial charge transfer rather than surface catalysis dynamic. This study provides an efficient strategy for tailoring non-covalent interaction by regulating single-atom coordination and promoting hole extract to boost PEC water oxidation activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202410632DOI Listing

Publication Analysis

Top Keywords

non-covalent interaction
16
tailoring non-covalent
12
single atom
12
charge transfer
12
water oxidation
12
pec water
12
interaction single
8
interfacial charge
8
pec performance
8
hole-extracting layer
8

Similar Publications

Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.

View Article and Find Full Text PDF

Functional characterization and protein engineering of a O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis of Stephania tetrandra.

Int J Biol Macromol

January 2025

Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Jinhua Academy, Zhejiang Chinese Medical University, Jinhua 321015, China. Electronic address:

Benzylisoquinoline alkaloids (BIAs) are the primary active components of Stephania tetrandra. However, the molecular mechanisms underlying BIA biosynthesis in S. tetrandra remain poorly understood.

View Article and Find Full Text PDF

Dynamically mechanochromic, fluorescence-responsive, and underwater sensing cellulose nanocrystal-based conductive elastomers.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:

Utilizing cellulose nanocrystals (CNCs) to mimic biological skin capable of converting external stimuli into optical and electrical signals represents a significant advancement in the development of advanced photonic materials. However, traditional CNC photonic materials typically exhibit static and singular optical properties, with their structural color and mechanical performance being susceptible to water molecules, thereby limiting their practical applications. In this study, CNC-based conductive elastomers with dynamic mechanochromism, fluorescence responsiveness, and enhanced water resistance were developed by incorporating carbon quantum dots (C QDs) and hydrophobic deep eutectic solvents (HDES) into CNC photonic films via an in-situ swelling-photopolymerization method.

View Article and Find Full Text PDF

The polyphenol-starch complex has become a hot research topic since it is evident that this modification method can alter the physicochemical properties of starch as well as improve its nutritional value. This work aimed to evaluate the effect of ginger polyphenol gingerols (GNs) and shogaols (SNs) on the structure of starch with different amylose content (WCS, CS, G56, G80). Textural and rheological results indicated that GNs and SNs had more pronounced inhibitory retrogradation effects for relative low-level amylose starches (WCS and CS) compared to relative high-level amylose starches (G56 and G80).

View Article and Find Full Text PDF

Molecular basis of interchain disulfide bond formation in BMP-9 and BMP-10.

J Mol Biol

January 2025

Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA. Electronic address:

BMP-9 and BMP-10 are TGF-β family signaling ligands naturally secreted into blood. They act on endothelial cells and are required for proper development and maintenance of the vasculature. In hereditary hemorrhagic telangiectasia, regulation is disrupted due to mutations in the BMP-9/10 pathway, namely in the type I receptor ALK1 or the co-receptor endoglin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!