AI Article Synopsis

  • Biochar is being studied as a supplement for ruminants to potentially reduce methane emissions from digestion, but results vary based on the type, source, and administration methods of the biochar.
  • Two experiments were conducted: the first involved 12 steers fed different biochar doses along with molasses to measure methane emissions and analyze rumen microbes over 56 days.
  • The second experiment involved 45 heifers grazing together on biochar, also mixed with molasses, for 60 days to assess its impact on productivity and methane emissions under natural grazing conditions.

Article Abstract

Introduction: Biochar has gained significant attention as a possible anti-methanogenic supplement for ruminants due to its potential to reduce methane (CH₄) emissions from enteric fermentation. However, its effects on rumen methanogenesis have been inconsistent and, in some cases, contradictory. These variations are likely influenced by factors such as the type of biochar used, its source material, and how it is administered, including the form in which it is provided and the dosage needed to achieve desired outcomes. This study aimed to examine the effects of two fit-for-purpose biochars on rumen fermentation, CH emissions, and the rumen microbiome of cattle-fed roughage-based diets. Two experiments were conducted to assess the potential of biochar in mitigating CH emissions.

Experiment 1: This was a controlled pen trial conducted over 56 days, involving 12 steers that were fed Rhodes grass hay . The animals were assigned to one of four treatment groups: control (no biochar, only molasses), low dose (50 g biochar/animal/day), mid dose (100 g biochar/animal/day), or high dose (200 g biochar/animal/day). Two types of biochar, Biochar 1 and Biochar 2, were administered with molasses (200 mL per animal/day). Methane emissions were measured using open-circuit respiration chambers, and rumen fluid samples were collected for analysis of the rumen microbial community and fermentation metabolite.

Experiment 2: In this trial, 45 heifers were selected and grazed together in a single paddock for 60 days to assess the effects of biochar on productivity and CH emissions under grazing conditions. The animals were allocated to one of three treatment groups (15 animals per group): control (no biochar, only molasses), Biochar 1, or Biochar 2. Each group was administered biochar at an estimated single dose of 100 g per animal/day mixed with molasses. Methane emissions were measured using GreenFeed systems in the field to monitor CH₄ production from individual animals.

Results: In the controlled pen trial (Experiment 1), biochar supplementation resulted in a reduction of CH₄ emissions by 8.8-12.9% without any negative effects on rumen fermentation or dry matter intake (DMI). Minor changes were observed in the rumen bacterial community, particularly in the and families. However, in the grazing trial (Experiment 2), no significant differences in CH₄ emissions or productivity were detected with biochar supplementation.

Conclusion: While the results from controlled feeding conditions suggest that biochar has the potential to reduce enteric CH₄ emissions, the lack of significant findings under grazing conditions highlights the need for further research. Future studies should focus on identifying biochar types, doses, and delivery methods that are effective in reducing CH₄ emissions in grazing systems without compromising cattle productivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611548PMC
http://dx.doi.org/10.3389/fmicb.2024.1463817DOI Listing

Publication Analysis

Top Keywords

ch₄ emissions
20
biochar
16
rumen fermentation
12
biochar biochar
12
emissions
9
fit-for-purpose biochars
8
rumen
8
biochars rumen
8
potential reduce
8
effects rumen
8

Similar Publications

Coupling of single nanodiamonds hosting SiV color centers to plasmonic double bowtie microantennas.

Nanotechnology

January 2025

Experimentalphysik, Saarland University, Fachrichtung 7.2, Campus E2.6, 66123 Saarbruecken, Saarbrucken, Saarland, 66123, GERMANY.

Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence spectrum and therefore adapt the individual color center to desired properties.

View Article and Find Full Text PDF

Background: The prevalence of hearing loss in infants in India varies between 4 and 5 per 1000. Objective-based otoacoustic emissions and auditory brainstem response have been used in high-income countries for establishing early hearing screening and intervention programs. Nevertheless, the use of objective screening tests in low- and middle-income countries (LMICs) such as India is not feasible.

View Article and Find Full Text PDF

In this paper, we introduce FUSION-ANN, a novel artificial neural network (ANN) designed for acoustic emission (AE) signal classification. FUSION-ANN comprises four distinct ANN branches, each housing an independent multilayer perceptron. We extract denoised features of speech recognition such as linear predictive coding, Mel-frequency cepstral coefficient, and gammatone cepstral coefficient to represent AE signals.

View Article and Find Full Text PDF

B- and N-heterocyclic fluorophores have reveal promising efficiency in blue organic light-emitting diodes (OLEDs) with small full-width-at-half-maximum (FWHM). However, their structural determinants for spectral broadening and operating stability are still needed to be investigated in further. Herein, a novel multi-N-heterocycles Diindolo[3,2,1jk:3',2',1'jk]dicarbazole[1,2-b:4,5-b] (DIDCz) is proposed to manipulate the emission color toward pure blue region by extending π-conjugation of the N-π-N bridge.

View Article and Find Full Text PDF

An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

Adv Sci (Weinh)

January 2025

Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.

Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!