The consumption of non-renewable fossil fuels has directly contributed to a dramatic rise in global carbon dioxide (CO) emissions, posing an ongoing threat to the ecological security of the Earth. Microbial electrosynthesis (MES) is an innovative energy regeneration strategy that offers a gentle and efficient approach to converting CO into high-value products. The cathode chamber is a vital component of an MES system and its internal factors play crucial roles in improving the performance of the MES system. Therefore, this review aimed to provide a detailed analysis of the key factors related to the cathode chamber in the MES system. The topics covered include inward extracellular electron transfer pathways, cathode materials, applied cathode potentials, catholyte pH, and reactor configuration. In addition, this review analyzes and discusses the challenges and promising avenues for improving the conversion of CO into high-value products via MES.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611015 | PMC |
http://dx.doi.org/10.1016/j.engmic.2024.100141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!