Copper-radical oxidases: A diverse group of biocatalysts with distinct properties and a broad range of biotechnological applications.

Eng Microbiol

Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany.

Published: September 2022

Copper-radical oxidases (CROs) catalyze the two-electron oxidation of a large number of primary alcohols including carbohydrates, polyols and benzylic alcohols as well as aldehydes and α-hydroxy-carbonyl compounds while reducing molecular oxygen to hydrogen peroxide. Initially, CROs like galactose oxidase and glyoxal oxidase were identified only in fungal secretomes. Since the last decade, their representatives have also been identified in some bacteria. CROs are grouped in the AA5 family of "auxiliary activities" in the database of Carbohydrate-Active enzymes. Despite low overall sequence similarity and different substrate specificities, sequence alignments and the solved crystal structures revealed a conserved architecture of the active sites in all CROs, with a mononuclear copper ion coordinated to an axial tyrosine, two histidines, and a cross-linked cysteine-tyrosyl radical cofactor. This unique post-translationally modified protein cofactor has attracted much attention in the past, which resulted in a large number of reports that shed light on key steps of the catalytic cycle and physico-chemical properties of CROs. Thanks to their broad substrate spectrum accompanied by the only need for molecular oxygen for catalysis, CROs since recently experience a renaissance and have been applied in various biocatalytic processes. This review provides an overview of the structural features, catalytic mechanism and substrates of CROs, presents an update on the engineering of these enzymes to improve their expression in recombinant hosts and to enhance their activity, and describes their potential fields of biotechnological application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611005PMC
http://dx.doi.org/10.1016/j.engmic.2022.100037DOI Listing

Publication Analysis

Top Keywords

copper-radical oxidases
8
large number
8
molecular oxygen
8
cros
7
oxidases diverse
4
diverse group
4
group biocatalysts
4
biocatalysts distinct
4
distinct properties
4
properties broad
4

Similar Publications

Bacterial and fungal copper radical oxidases (CROs) from Auxiliary Activity Family 5 (AA5) are implicated in morphogenesis and pathogenesis. The unique catalytic properties of CROs also make these enzymes attractive biocatalysts for the transformation of small molecules and biopolymers. Despite a recent increase in the number of characterized AA5 members, especially from subfamily 2 (AA5_2), the catalytic diversity of the family as a whole remains underexplored.

View Article and Find Full Text PDF

Glyoxal oxidases, belonging to the group of copper radical oxidases (CROs), oxidize aldehydes to carboxylic acids, while reducing O to HO. Their activity on furan derivatives like 5-hydroxymethylfurfural (HMF) makes these enzymes promising biocatalysts for the environmentally friendly synthesis of the bioplastics precursor 2,5-furandicarboxylic acid (FDCA). However, glyoxal oxidases suffer from inactivation, which requires the identification of suitable redox activators for efficient substrate conversion.

View Article and Find Full Text PDF

Label-free comparative proteomic analysis of Pleurotus eryngii grown on sawdust, bagasse, and peanut shell substrates.

J Proteomics

March 2024

State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

The white rot fungi Pleurotus eryngii are environmental microorganisms that can effectively break down lignocellulosic biomass. However, understanding of the mechanisms by which P. eryngii is effective in degrading lignocellulose is still limited.

View Article and Find Full Text PDF

A unique AA5 alcohol oxidase fused with a catalytically inactive CE3 domain from the bacterium Burkholderia pseudomallei.

FEBS Lett

July 2023

Division of Industrial Biotechnology, Department of Life Sciences, Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden.

Copper radical oxidases (CROs) are redox enzymes able to oxidize alcohols or aldehydes, while only requiring a single copper atom as cofactor. Studied CROs are found in one of two subfamilies within the Auxiliary Activities family 5 (AA5) in the carbohydrate-active enzymes database. We here characterize an AA5 enzyme outside the subfamily classification from the opportunistic bacterial pathogen Burkholderia pseudomallei, which curiously was fused to a carbohydrate esterase family 3 domain.

View Article and Find Full Text PDF

Fungal copper radical oxidases (CROs) from the Auxiliary Activity family 5 (AA5) constitute a group of metalloenzymes that oxidize a wide panel of natural compounds, such as galactose-containing saccharides or primary alcohols, into product derivatives exhibiting promising biotechnological interests. Despite a well-conserved first copper-coordination sphere and overall fold, some members of the AA5_2 subfamily are incapable of oxidizing galactose and galactosides but conversely efficiently catalyse the oxidation of diverse aliphatic alcohols. The objective of this study was to understand which residues dictate the substrate preferences between alcohol oxidases and galactose oxidases within the AA5_2 subfamily.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!