Modeled modern and Last Glacial Maximum (LGM) climate ranges for 47 genetically confirmed small Holarctic land snails documented profound landscape dynamism over the last 21,000 years. Following deglaciation, range areas tended to increase by 50% while isolating barrier widths were cut in half. At the same time, the nature of isolating barriers underwent profound change, with the North American continental ice sheet becoming as important in the LGM as the Atlantic Ocean is today in separating Nearctic and Palearctic faunas. Because appropriate modern climate occurs for these species throughout the Holarctic, with no clear barriers being present-especially for such efficient passive dispersers-the current >90% turnover observed between Eurasian and North American species pools appears at least in part related to the LGM landscape. Understanding current and predicting potential future biodiversity patterns thus requires consideration of the landscape template across at least 15,000 years time scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613197 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.111272 | DOI Listing |
Genes (Basel)
January 2025
Group for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
: The Balkan Peninsula has served as an important migration corridor between Asia Minor and Europe throughout humankind's history and a refugium during the Last Glacial Maximum. Past migrations such as the Neolithic expansion, Bronze Age migrations, and the settlement of Slavic tribes in the Early Middle Ages, are well known for their impact on shaping the genetic pool of contemporary Balkan populations. They have contributed to the high genetic diversity of the region, especially in mitochondrial DNA (mtDNA) lineages.
View Article and Find Full Text PDFCommun Biol
January 2025
National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.
Wild boars inhabit diverse climates, including frigid regions like Siberia, but their migration history and cold adaptation mechanisms into high latitudes remain poorly understood. We constructed the most comprehensive wild boar whole-genome variant dataset to date, comprising 124 samples from tropical to frigid zones, among which 47 Russian, 8 South Chinese and 3 Vietnamese wild boars were newly supplemented. We also gathered 75 high-quality RNA-seq datasets from 10 tissues of 6 wild boars from Russia and 6 from southern China.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Geography and Environmental Science, University of Southampton, UK.
Substantial amounts of mercury (Hg) are projected to be released into Arctic watersheds as permafrost thaws amid warmer and wetter conditions. This may have far-reaching consequences because the highly toxic methylated form of Hg biomagnifies rapidly in ecosystems. However, understanding how climate change affects Hg dynamics in permafrost regions is limited due to the lack of long-term Arctic Hg records.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 2005, USA.
is a rare Coffea species boasting a flavor profile comparable to Arabica coffee () and has a good adaptability to lowland tropical climates. This species faces increasing threats from climate change, deforestation, and habitat fragmentation in its West African homeland. Using 1037 novel SNP markers derived from Genotyping-by-Sequencing (GBS), we revealed the presence of three distinct natural populations (mean Fst = 0.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Mountain Societies Research Institute, University of Central Asia, Bishkek, Kyrgyzstan.
Mountain regions of Central Asia are experiencing strong influences from climate change, with significant reductions in snow cover and glacial reserves. A comprehensive assessment of the potential consequences under the worst-case climate scenario is vital for adaptation measures throughout the region. Water balance analysis in the Naryn River basin was conducted for the baseline period of 1981-2000 including potential changes under the worst-case SSP5-8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!