A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accelerated galvanic interaction for the fabrication of core-shell nanowires to boost the hydrogen evolution reaction. | LitMetric

As an essential reaction of water splitting in alkaline solution, the hydrogen evolution reaction (HER) is seriously limited by its ponderous dynamics and the dissolution of Ru. Herein, we propose a strategy for the electrochemical deposition of Ru nanoparticles on the surface of Ag nanowires (Ag NWs) to generate a core-shell Ru@Ag/AgCl catalyst through an accelerated galvanostatic interaction conducted in RuCl solution. The active sites of Ru were precisely controlled by tailoring the number of cycles in cyclic voltammetry (CV). Interestingly, the as-designed Ru@Ag/AgCl-200 electrode maintained its original morphology after 200 CV cycles, demonstrating the high stability of the designed electrocatalyst. The electrochemical performance of the Ru@Ag/AgCl-200 catalyst justifies its excellent HER performance, including a low overpotential of 40.2 mV at a current density of 10 mA cm, small Tafel slope of 53.24 mV dec, and great stability, compared to other control catalysts. Furthermore, the Ru@Ag/AgCl-200 catalyst delivered a low output potential of 1.53 V and sustained long-term stability of 50 h at a current density of 10 mA cm for water splitting. This work provides a framework for accelerated galvanostatic interaction for the controlled synthesis of Ru-based catalysts, which can be used for boosting the HER in alkaline solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr03876bDOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
8
evolution reaction
8
water splitting
8
accelerated galvanostatic
8
galvanostatic interaction
8
ru@ag/agcl-200 catalyst
8
current density
8
accelerated galvanic
4
galvanic interaction
4
interaction fabrication
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!