A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Effects of Enhanced-efficiency Nitrogen Fertilizers on Soil Quality, Microbial Metabolism, and Soil Ecosystem Multifunctionality of Spring Maize Under White Plastic Film Mulching]. | LitMetric

[Effects of Enhanced-efficiency Nitrogen Fertilizers on Soil Quality, Microbial Metabolism, and Soil Ecosystem Multifunctionality of Spring Maize Under White Plastic Film Mulching].

Huan Jing Ke Xue

Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.

Published: November 2024

AI Article Synopsis

  • - Excessive nitrogen fertilizer use harms soil health, but enhanced-efficiency nitrogen fertilizers (EENFs) like urease and nitrification inhibitors can reduce this negative impact while still improving soil qualities.
  • - A study at Pengyang Experimental Station investigated various fertilization strategies and found that EENFs notably improved soil quality indicators like total nitrogen and microbial biomass compared to traditional mineral fertilizers.
  • - Results showed that using EENFs, particularly NBPT and DCD, helped alleviate microbial nutrient limitations and improved ecosystem multifunctionality, suggesting they are effective for maintaining soil health under specific conditions like plastic film mulching.

Article Abstract

Excessive nitrogen fertilizer application is the main driving force threatening soil health and reducing multiple soil functions. The enhanced-efficiency nitrogen fertilizers (EENFs), such as urease inhibitors (NBPT), nitrification inhibitors (DCD), and coated controlled-release urea (RCN), have been proven to be effective measures for reducing nitrogen fertilizer application. However, the effects of EENFs on soil quality (SQI), microbial metabolic characteristics, and soil ecosystem multifunctionality (EMF) and their internal relationships are still unclear. Therefore, based on the field positioning experiment started in 2019 by Pengyang Experimental Station of Guyuan City, Ningxia Hui Autonomous Region, we studied the effects of different fertilization strategies (no nitrogen fertilizer (N0), mineral nitrogen fertilizer (N200), DCD, NBPT, and RCN) on SQI, soil enzyme stoichiometry, and EMF under white plastic film mulching. The results revealed that: ① Compared with that under N0, N200 and EENFs increased soil total nitrogen (TN), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) contents. Compared to the SQI of N0 and N200, that of NBPT and DCD significantly increased by 59.97%-104.78% and 43.28%-83.42%, respectively, while RCN showed no significant change. ②EENFs can alleviate microbial carbon and nitrogen limitations better than N200 and increase soil EMF by 21.97% -51.53%. ③ The MBC, MBN, available nitrogen (AN), available phosphorus (AP), and water content (SWC) of soil factors were the common main factors affecting microbial C limitation, N limitation, and soil EMF. Moreover, the improvement in soil quality and alleviating microbial C and N limitation were conducive to improving soil EMF. Overall, the NBPT and DCD application under white plastic film mulching can achieve a win-win situation of soil health and EMF in the short term, which can provide references for optimizing local fertilization management measures.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202311248DOI Listing

Publication Analysis

Top Keywords

nitrogen fertilizer
16
soil
14
soil quality
12
white plastic
12
plastic film
12
soil emf
12
nitrogen
10
enhanced-efficiency nitrogen
8
nitrogen fertilizers
8
soil ecosystem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!