AI Article Synopsis

  • The study focuses on overcoming resistance to 5-fluorouracil (5-FU) in hepatocellular carcinoma (HCC) through a new prodrug called FU-SS-IND, which combines 5-FU with an IDO inhibitor to address drug resistance and boost immunotherapy.
  • The prodrug self-assembles into nanoparticles that promote glutathione (GSH) exhaustion, improving T cell function and converting the tumor environment from "cold" to "hot," leading to a 92.5% tumor inhibition rate in resistant mouse models.
  • FU-SS-IND nanoparticles also enhance the expression of PD-L1 on tumor cells, allowing for more effective combinations with immune checkpoint blockade therapies, suggesting significant potential for

Article Abstract

Clinical treatment of hepatocellular carcinoma (HCC) with 5-fluorouracil (5-FU), the primary anticancer agent, remains unsatisfactory due to the glutathione (GSH)-associated drug resistance and immunosuppressive microenvironment of HCC. To develop a facile yet robust strategy to overcome 5-FU resistance for enhanced immunotherapy treatment of HCC via all dimensional GSH exhaustion, we report in this study construction of a minimalist prodrug consisting of 5-FU linked to an indoleamine-(2,3)-dioxygenase (IDO) inhibitor (IND) via a disulfide bridge, FU-SS-IND that can further self-assemble into stabilized nanoparticles, FU-SS-IND NPs. Specifically, besides the disulfide linker-induced GSH exhaustion, IND inhibits GSH biosynthesis and enhances the effector function of T cells for turning a "cold" tumor to a "hot" one, which synergistically achieving a tumor inhibition rate (TIR) of 92.5% in a 5-FU resistant mice model. Most importantly, FU-SS-IND NPs could upregulate programmed death ligand 1 (PD-L1) expression on the surface of tumor cells, which enables facile combination with immune checkpoint blockade (ICB) for a ultimate prolonged survival lifetime of 5-FU-resistant tumors-bearing mice. Overall, the minimalist bioreducible nano-prodrug developed herein demonstrates great translatable potential for efficiently reversing drug resistance and enhancing immunotherapy of HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613529PMC
http://dx.doi.org/10.1186/s12951-024-03027-wDOI Listing

Publication Analysis

Top Keywords

drug resistance
12
enhanced immunotherapy
8
hepatocellular carcinoma
8
gsh exhaustion
8
fu-ss-ind nps
8
minimalist multifunctional
4
multifunctional nano-prodrug
4
nano-prodrug drug
4
resistance
4
resistance reverse
4

Similar Publications

Background: With extended gefitinib treatment, the therapeutic effect in some non-small cell lung cancer (NSCLC) patients declined with the development of drug resistance. Aidi injection (ADI) is utilized in various cancers as a traditional Chinese medicine prescription. This study explores the molecular mechanism by which ADI, when combined with gefitinib, attenuates gefitinib resistance in PC9GR NSCLC cells.

View Article and Find Full Text PDF

Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.

View Article and Find Full Text PDF

Bacterial infections commonly complicate cutaneous leishmaniasis (CL), worsening the disease and delaying healing. Despite this, there is a gap in research concerning the characteristics of pathogenic microorganisms associated in CL patients. This study aims to identify bacterial isolates and drug susceptibility patterns in CL patients.

View Article and Find Full Text PDF

Background: Microsporum canis, a dermatophyte commonly associated with pets, is a leading cause of severe tinea capitis. The increasing prevalence of antifungal resistance among dermatophytes poses a significant global health challenge.

Objectives: This study aims to define the updated antifungal susceptibility profile of M.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!