Older is order: entropy reduction in cortical spontaneous activity marks healthy aging.

BMC Neurosci

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China.

Published: December 2024

Background: Entropy trajectories remain unclear for the aging process of human brain system due to the lacking of longitudinal neuroimaging resource.

Results: We used open data from an accelerated longitudinal cohort (PREVENT-AD) that included 24 healthy aging participants followed by 4 years with 5 visits per participant to establish cortical entropy aging curves and distinguish with the effects of age and cohort. This reveals that global cortical entropy decreased with aging, while a significant cohort effect was detectable that people who were born earlier showed higher cortical entropy. Such entropy reductions were also evident for large-scale cortical networks, although with different rates of reduction for different networks. Specifically, the primary and intermediate networks reduce their entropy faster than the higher-order association networks.

Conclusions: Our study confirmed that cortical entropy decreases continually in the aging process, both globally and regionally, and we conclude two specific characteristics of the entropy of the human cortex with aging: the shift of the complexity hierarchy and the diversity of complexity strengthen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616130PMC
http://dx.doi.org/10.1186/s12868-024-00916-6DOI Listing

Publication Analysis

Top Keywords

cortical entropy
16
entropy
9
healthy aging
8
aging process
8
aging
7
cortical
6
older order
4
order entropy
4
entropy reduction
4
reduction cortical
4

Similar Publications

Cortical spreading depolarization (CSD), a slowly propagating wave of transient cellular depolarization, is a reliable cortical response to various brain insults (stroke, trauma, seizures) and underlying mechanism of migraine aura. Little is known about CSD effects on brain network activity. Using undirected (mutual information, MI) and directed (transfer entropy, TE) measures, we studied the dynamics of cross-hemispheric connectivity associated with the development of unilateral CSD in freely behaving rats and the involvement of inhibitory transmission in mechanisms of the coupling changes.

View Article and Find Full Text PDF

Most of the recent work in psychedelic neuroscience has been done using noninvasive neuroimaging, with data recorded from the brains of adult volunteers under the influence of a variety of drugs. While these data provide holistic insights into the effects of psychedelics on whole-brain dynamics, the effects of psychedelics on the mesoscale dynamics of neuronal circuits remain much less explored. Here, we report the effects of the serotonergic psychedelic N,N-diproptyltryptamine (DPT) on information-processing dynamics in a sample of in vitro organotypic cultures of cortical tissue from postnatal rats.

View Article and Find Full Text PDF

Finding the synchronization between Electroencephalography (EEG) and human cognition is an essential aspect of cognitive neuroscience. Adaptive Control of Thought-Rational (ACT-R) is a widely used cognitive architecture that defines the cognitive and perceptual operations of the human mind. This study combines the ACT-R and EEG-based cortex-level connectivity to highlight the relationship between ACT-R modules during the EEG-based -back task (for validating working memory performance).

View Article and Find Full Text PDF

Objective: To investigate significant differences in selected radiomic parameters when classifying periapical lesions based on volumetric size, cortical expansion, erosion, and shape using Cone Beam Computed Tomography (CBCT).

Methods: A retrospective analytical and comparative study was conducted on 100 small field of view (FOV) 50×50 mm CBCT scans collected between the years 2018 and 2023. The study involved qualitative classification of periapical lesions, followed by segmentation and extraction of radiomic parameters.

View Article and Find Full Text PDF

Parametrization of the dying brain: A case report from ICU bed-side EEG monitoring.

Neuroimage

December 2024

Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine and Health, 81675 Munich, Germany.

Background: Cortical high-frequency activation immediately before death has been reported, raising questions about an enhanced conscious state at this critical time. Here, we analyzed an electroencephalogram (EEG) from a comatose patient during the dying process with a standard bedside monitor and spectral parameterization techniques.

Methods: We report neurophysiologic features of a dying patient without major cortical injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!