A few years into the COVID-19 pandemic, the SARS-CoV-2 Omicron strain rapidly becomes and has remained the predominant strain. To date, Omicron and its subvariants, while more transmittable, appear to cause less severe disease than prior strains. To study the cause of this reduced pathogenicity we compare SARS-CoV-2 ancestral Nsp6 with Nsp6-Omicron, which we have previously identified as one of the most pathogenic viral proteins. Here, through ubiquitous expression in Drosophila, we show that ancestral Nsp6 causes both structural and functional damage to cardiac, muscular, and tracheal (lung) tissue, whereas Nsp6-Omicron has minimal effects. Moreover, we show that ancestral Nsp6 dysregulates the glycolysis pathway and disrupts mitochondrial function, whereas Nsp6-Omicron does not. Through validation in mouse primary cardiomyocytes, we find that Nsp6-induced dysregulated glycolysis underlies the cardiac dysfunction. Together, the results indicate that the amino acid changes in Omicron might hinder its interaction with host proteins thereby minimizing its pathogenicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615247PMC
http://dx.doi.org/10.1038/s42003-024-07307-xDOI Listing

Publication Analysis

Top Keywords

ancestral nsp6
16
sars-cov-2 nsp6-omicron
4
nsp6-omicron damage
4
damage drosophila
4
drosophila heart
4
heart mouse
4
mouse cardiomyocytes
4
ancestral
4
cardiomyocytes ancestral
4
nsp6
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!