Intervertebral disc degeneration (IDD) is a prevalent spinal disorder and the principal cause of lower back pain (LBP). Diverse forms of programmed cell death (PCD) have been identified as the key phenotypes of the disease and have the potential to serve as new indicators for the diagnosis and prognosis of IDD. However, the mechanism underlying necroptosis in IDD remains unclear. This study aimed to identify novel biomarkers that promote nucleus pulposus cell necroptosis in IDD using bioinformatic analysis and experimental validation. We analyzed multiple datasets of IDD from the Gene Expression Omnibus (GEO) database to identify necroptosis-related IDD differential genes (NRDEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, followed by logistic least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive (SVM) algorithms to identify key genes. Gene set enrichment analysis (GSEA) and logistic regression analysis were used to ascertain the potential functions of these genes and to identify key genes, respectively. We then constructed mRNA-miRNA, mRNA-TF, mRNA-drug, and functional similarity gene interaction networks for the seven key genes identified. We used IDD clinical samples and necroptotic cell model to validate our findings. Immunohistochemical staining, RT-qPCR, and western blotting results indicated that IRF1 may be a hub necroptosis-related gene. To further elucidate the function of IRF1, we constructed IRF1 knockdown and overexpression models, which revealed that IRF1 promotes necroptosis in rat nucleus pulposus cells, increases mitochondrial ROS levels, and decreases ATP levels. These findings provide new insights into the development of necroptosis in IDD and, for the first time, validate the role of IRF1 as a novel biomarker for the diagnosis and treatment of IDD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615235 | PMC |
http://dx.doi.org/10.1038/s41598-024-81681-8 | DOI Listing |
Front Biosci (Landmark Ed)
November 2024
Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China.
Background: The mechanism for RNA methylation during disc degeneration is unclear. The aim of this study was to identify N6-methyladenosine (m6A) markers and therapeutic targets for the prevention and treatment of intervertebral disc degeneration (IDD).
Methods: Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and quantitative reverse transcription PCR (RT-qPCR) were employed to analyze m6A modifications of IDD-related gene expression.
J Orthop Surg Res
December 2024
Department of Orthopaedic Surgery, Japan Red Cross Aichi Medical Center Nagoya Daini Hospital, Myokencho 2-9, Syowa-Ku, Nagoya, Aichi, 466-8650, Japan.
Background: Low back pain is often caused by lumbar disc herniation (LDH). Treatment of LDH is possible using chemonucleolysis of the nucleus pulposus with condoliase injection. However, onset of the therapeutic effect varies among patients, with improvement from an early stage to 3 months post-injection.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China; Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. Electronic address:
Medical and conservative treatments for intervertebral disc degeneration (IDD) primarily focus on alleviating symptoms. However, effective curative therapies that promote disc regeneration remain lacking. Recent advancements in disc repair materials offer a potential solution, but identifying effective cytokines for regeneration and developing efficient drug delivery systems are crucial for success.
View Article and Find Full Text PDFJOR Spine
December 2024
Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin Dublin Ireland.
Background: Low back pain (LBP) is predominantly caused by degeneration of the intervertebral disc (IVD) and central nucleus pulposus (NP) region. Conservative treatments fail to restore disc function, motivating the exploration of nucleic acid therapies, such as the use of microRNAs (miRNAs). miRNAs have the potential to modulate expression of discogenic factors, while silencing the catabolic cascade associated with degeneration.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China.
Objective: Percutaneous Endoscopic Transforaminal Discectomy (PETD) is recognized as the leading surgical intervention for lumbar disc herniation (LDH). Moreover, Body Mass Index (BMI) has been established as an independent risk factor for disc reherniation post-PETD. Furthermore, there is a lack of studies investigating the biomechanical changes in the disc post-PETD in relation to diverse BMI levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!