Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We designed an ultra-broadband graphene absorber structure with the applied resonator design based on the Al-AlSb-Cr structure, and a thin effective layer of graphene is inserted. To develop the role of the graphene in solar absorbers, the current structure investigates above 98% for 1500 nm bandwidth and 2800 nm (overall bandwidth) for 93.68%. In this study, the procedure of the investigated design in flow chat configuration, the multi-step presentation of the developed layers, and the analysis of the used parameters will be involved. The design is optimized using machine learning algorithm. The optimized design shows good performance compared to the other system. The newly investigated graphene design can be absorbed not only in visible places but also in near-infrared energy and ultraviolet zones. The other applications of the light trapping process, photovoltaic devices, and energy harvesting can also be used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615313 | PMC |
http://dx.doi.org/10.1038/s41598-024-79120-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!