A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cell polarity proteins promote macropinocytosis in response to metabolic stress. | LitMetric

AI Article Synopsis

  • Macropinocytosis is a survival strategy used by cancer cells, especially in nutrient-poor environments, relying heavily on glutamine to sustain themselves, particularly in pancreatic ductal adenocarcinoma (PDAC) cells.
  • The atypical protein kinase C (aPKC) enzymes, specifically PKCζ and PKCι, play a crucial role in regulating macropinocytosis by interacting with scaffold proteins that influence cell structure and function.
  • The research shows that aPKCs enhance macropinocytosis through the relocation of Par3 to microtubules, and their depletion adversely affects cell viability, which can be reversed by restoring macropinocytosis, highlighting the significance of aPKCs in supporting

Article Abstract

Macropinocytosis has emerged as a scavenging pathway that cancer cells exploit to survive in a nutrient-deprived microenvironment. Tumor cells are especially reliant on glutamine for their survival, and in pancreatic ductal adenocarcinoma (PDAC) cells, glutamine deficiency can enhance the stimulation of macropinocytosis. Here, we identify the atypical protein kinase C (aPKC) enzymes, PKCζ and PKCι, as regulators of macropinocytosis. In normal epithelial cells, aPKCs associate with the scaffold proteins Par3 and Par6 to regulate cell polarity, affecting several targets, including the Par1 kinases and we find that each of these proteins is required for macropinocytosis. Mechanistically, aPKCs are regulated by EGFR signaling or by the transcription factor CREM to promote the Par3 relocation to microtubules, facilitating macropinocytosis in a dynein-dependent manner. Importantly, cell fitness impairment caused by aPKC depletion is rescued by the restoration of macropinocytosis and aPKCs support PDAC growth in vivo. Our findings enhance our understanding of the mechanistic underpinnings that control macropinocytic uptake in the context of metabolic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614886PMC
http://dx.doi.org/10.1038/s41467-024-54788-9DOI Listing

Publication Analysis

Top Keywords

cell polarity
8
metabolic stress
8
macropinocytosis
7
polarity proteins
4
proteins promote
4
promote macropinocytosis
4
macropinocytosis response
4
response metabolic
4
stress macropinocytosis
4
macropinocytosis emerged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!