Quantification of Rapid Cooling of Glycerol/Water Solutions Based on Photoluminescence from Thioflavin T.

J Phys Chem B

Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.

Published: December 2024

Rapid cooling to a solid state allows intermediates in chemical and biomolecular processes that occur in solution near room temperature to be trapped for subsequent measurements by magnetic resonance spectroscopies, electron microscopy, or other techniques. In time-resolved solid state nuclear magnetic resonance and rapid freeze-quench electron paramagnetic resonance studies, solutions are typically frozen by spraying into a cold bath or onto a cold metal surface. Although simulations suggest freezing on millisecond or submillisecond time scales, direct experimental measurements of cooling rates have been elusive. Here, we describe a method for quantification of rapid cooling rates based on measurements of temperature-dependent photoluminescence from thioflavin T (ThT). In our experiments, a jet of ThT solution in glycerol/water, with 10.8 m/s jet velocity and 30 μm diameter, freezes on a cold, rotating copper surface. Images of ThT photoluminescence on the copper surface indicate that the cooling rate of the solution increases linearly with the surface velocity over the 0.45-6.2 m/s range. At surface velocities greater than 3.8 m/s, the time to cool from 300 to 260 K or from 300 to 230 K is less than 100 μs or less than 700 μs. The experimental results do not agree quantitatively with calculations in which a layer of glycerol/water cools by thermal conduction when suddenly brought in contact with a cold copper surface. Discrepancies between experimental results and simplistic calculations illustrate the importance of direct measurements of cooling rates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c07105DOI Listing

Publication Analysis

Top Keywords

rapid cooling
12
cooling rates
12
copper surface
12
quantification rapid
8
photoluminescence thioflavin
8
solid state
8
magnetic resonance
8
measurements cooling
8
cooling
6
surface
6

Similar Publications

A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity.

View Article and Find Full Text PDF

Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar-Thermal Energy Management.

Molecules

January 2025

Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.

The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.

View Article and Find Full Text PDF

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

In the event of a nuclear explosion in an urban environment, contaminated persons may be directed to Community Reception Centers (CRC) and/or public shelters. This paper is a companion document to a previous paper that addresses the inhalation hazard to workers at a CRC from resuspension of fallout from the evacuees. To limit the inhalation hazard evacuees must be screened to prevent severely contaminated persons from entering a CRC.

View Article and Find Full Text PDF

Investigation of electrochromic performances of multicolor VO devices fabricated at low processing temperature.

Sci Rep

January 2025

Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100, Cyberjaya, Selangor, Malaysia.

In recent decades, poorly insulated windows have increased the energy consumption of heating and cooling systems, thus contributing to excessive carbon dioxide emissions and other related pollution issues. From this perspective, the electrochromic (EC) windows could be a tangible solution as the indoor conditions are highly controllable by these smart devices even at a low applied voltage. Literally, vanadium pentoxide (VO) is a renowned candidate for the EC application due to its multicolor appearance and substantial lithium insertion capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!