Atomically thin semiconductors, encompassing both 2D materials and quantum wells, exhibit a pronounced enhancement of excitonic effects due to geometric confinement. Consequently, these materials have become foundational platforms for the exploration and utilization of excitons. Recent ab initio studies have demonstrated that phonons can substantially screen electron-hole interactions in bulk semiconductors and strongly modify the properties of excitons. While excitonic properties of atomically thin semiconductors have been the subject of extensive theoretical investigations, the role of phonon screening on excitons in atomically thin structures remains unexplored. In this Letter, we demonstrate via ab initio GW-Bethe-Salpeter equation calculations that phonon screening can have a significant impact on optical excitations in atomically thin semiconductors. We further show that the degree of phonon screening can be tuned by structural engineering. We focus on atomically thin GaN quantum wells embedded in AlN and identify specific phonons in the surrounding material, AlN, that dramatically alter the lowest-lying exciton in monolayer GaN via screening. Our studies provide new intuition beyond standard models into the interplay among structural properties, phonon characteristics, and exciton properties in atomically thin semiconductors, and have implications for future experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.206901 | DOI Listing |
Rev Sci Instrum
December 2024
J-PARC Center, Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Ibaraki, Japan.
A gas-sheet beam profile monitor enabling non-destructive two-dimensional profile measurements of a high-intensity beam by capturing an image of a beam-induced fluorescence was developed. For quantitative profile measurements, the monitor's response function comprising, e.g.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Chemistry and Biochemistry, University of Arkansas Fayetteville AR 72701 USA
The use of metal oxide catalysts to enhance plasma CO reduction has seen significant recent development towards processes to reduce greenhouse gas emissions and produce renewable chemical feedstocks. While plasma reactors are effective at producing the intended chemical transformations, the conditions can result in catalyst degradation. Atomic layer deposition (ALD) can be used to synthesize complex, hierarchically structured metal oxide plasma catalysts that, while active for plasma CO reduction, are potentially vulnerable to degradation due to their high surface area and nanoscopic thickness.
View Article and Find Full Text PDFSmall
December 2024
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China.
In recent years, single-atom catalysts (SACs) with separated active centers and high atom utilization have grown significantly as a significant area of catalytic research. In catalytic applications, SACs of various kinds have demonstrated exceptional performance, so the study of the catalytic mechanism of SACs provides a clearer direction for the preparation of catalysts with high performance. Strong linkages between the single atoms and the support are necessary to overcome the tendency of single atoms to aggregate into clusters, which is called metal-support interaction (MSI).
View Article and Find Full Text PDFWe demonstrate a hybrid integrated optical frequency comb amplifier composed of a silicon carbide microcomb and a lithium niobate waveguide amplifier, which generates a 10-dB on-chip gain for the C+L band microcombs under 1480-nm laser pumping and an 8-dB gain under 980-nm laser pumping. It will solve the problem of low output power of microcombs and can be applied in various scenarios such as optical communication, lidar, optical computing, astronomical detection, atomic clocks, and more.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Capital Normal University, Department of Chemistry, No. 105 Xisan Huan Bei Road, Haidian Dist. Beijing, CHINA.
Whether the catalyst can realize the non-CO pathway is the key to greatly improve the catalytic activity and stability of methanol oxidation reaction (MOR). It is feasible to optimize the reaction path selectivity by modifying organic ligands and constructing single-atom systems. At the same time, heterogeneous metal nanosheets with atomic thickness have been shown to significantly enhance the catalytic activity of materials due to their ultra-high exposure of active sites and synergistic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!