Recent experiments on rhombohedral pentalayer graphene with a substrate-induced moiré potential have identified both Chern insulators and fractional quantum Hall states at zero magnetic field. Surprisingly, these states are observed in strong displacement fields where the effects of the moiré lattice are weak, and seem to be readily accessed without fine-tuning. To address these experimental puzzles, we study a model of interacting electrons in this geometry. Within self-consistent Hartree-Fock (SCHF) calculations, we find an isolated Chern band with small bandwidth and good quantum geometry. Exact diagonalization and density-matrix renormalization group calculations both confirm the band hosts fractional quantum Hall states without a magnetic field. Remarkably, the Chern band is stable at a wide range of angles, at four through six rhombohedral layers, at varying rhombohedral hopping parameters, and-most strikingly-survives in SCHF calculations when the moiré potential vanishes. In this limit, the state spontaneously breaks time-reversal and translation symmetry simultaneously, giving a topological crystalline state that we term the "anomalous Hall crystal." We argue this is a general mechanism to create stable Chern bands in rhombohedral multilayer graphene, opening the door to studying the interplay between electronic topology, fractionalization, and spontaneous translation symmetry breaking.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.206503DOI Listing

Publication Analysis

Top Keywords

fractional quantum
12
quantum hall
12
hall states
12
states magnetic
12
magnetic field
12
rhombohedral multilayer
8
multilayer graphene
8
chern bands
8
moiré potential
8
schf calculations
8

Similar Publications

Excitons, Coulomb-driven bound states of electrons and holes, are typically composed of integer charges. However, in bilayer systems influenced by charge fractionalization, a more interesting form of interlayer exciton can emerge, in which pairing occurs between constituents that carry fractional charges. Despite numerous theoretical predictions for these fractional excitons, their experimental observation has remained unexplored.

View Article and Find Full Text PDF

Thermally Activated Delayed Fluorescence in B,N-Substituted Tetracene Derivatives: A Theoretical Pathway to Enhanced OLED Materials.

J Phys Chem A

January 2025

Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900 São Paulo, Brazil.

Polycyclic aromatic hydrocarbons (PAHs) exhibit intriguing characteristics that position them as promising candidates for advancements in organic semiconductor technologies. Notably, tetracene finds substantial utility in Electronics due to its application in organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). The strategic introduction of an isoelectronic boron-nitrogen (B,N) pair to replace a carbon-carbon pair in acenes introduces changes in the electronic structure, allowing for the controlled modulation of diradical characteristics.

View Article and Find Full Text PDF

We realize a Laughlin state of two rapidly rotating fermionic atoms in an optical tweezer. By utilizing a single atom and spin resolved imaging technique, we sample the Laughlin wave function thereby revealing its distinctive features, including a vortex distribution in the relative motion, correlations in the particles' relative angle, and suppression of the interparticle interactions. Our Letter lays the foundation for atom-by-atom assembly of fractional quantum Hall states in rotating atomic gases.

View Article and Find Full Text PDF

A fundamental manifestation of the nontrivial correlations of an incompressible fractional quantum Hall (FQH) state is that an electron added to it disintegrates into more elementary particles, namely fractionally-charged composite fermions (CFs). We show here that the Girvin-MacDonald-Platzman (GMP) density-wave excitation of the ν=n/(2pn±1) FQH states also splits into more elementary single CF excitons. In particular, the GMP graviton, which refers to the recently observed spin-2 neutral excitation in the vanishing wave vector limit [Liang et al.

View Article and Find Full Text PDF

Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!