Aqueous organic aluminum batteries (AOABs) are increasingly becoming a focal point for next-generation large-scale energy storage solutions due to their safety, reliability, and structural diversity. However, the development of organic molecules is hindered by their low electron affinity and slow molecular dynamics. To address these drawbacks, a high-electrophilicity organic molecule, DQP-6CN was synthesized. Surprisingly, the introduction of cyano-substituted compounds not only provided additional redox sites to increase specific capacity but also significantly enhanced stability during cycling by extending the π-conjugation. Ex-situ tests and density functional theory (DFT) revealed the unique coordination mechanism between the cyano group (CN) and Al(OTF) ions. Moreover, the introduction of the cyano group reduced coulomb repulsion between electrons by lowering the local electron density of the molecule, significantly improving the rate performance, as further validated by electrochemical testing and theoretical simulations. Consequently, it delivers a high discharge specific capacity of 279 mAh g at 400 mA g, excellent rate capability and high cycle life. This experiment demonstrates that cyano compounds as cathodes for aqueous aluminum batteries open a new research avenue for safer and more efficient aqueous storage systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.11.206 | DOI Listing |
Nano Lett
January 2025
College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, P. R. China.
Ultrahigh nickel cathode materials are widely utilized due to their outstanding energy and power densities. However, the presence of cobalt can cause significant lattice distortion during charge and discharge cycles, leading to the loss of active lithium, the formation of lattice cracks, and the emergence of a rock salt phase that hinders lithium-ion transport. Herein, we developed a novel cobalt-free, aluminum-doped cathode material, LiNiMnAlO (NMA), which effectively delays the harmful H2-H3 phase transition, reduces lattice distortion, alleviates stress release, and significantly enhances structural stability.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Mechanical Engineering, Virginia Tech, Blacksburg, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States.
In this study, a group of aluminum-doped lithium iron phosphate (LFP) with varying dopant concentrations (Li Al FePO/C, where = 0.01-0.03) was synthesized via a solid-state reaction.
View Article and Find Full Text PDFLangmuir
January 2025
College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
Lithium-sulfur (Li-S) batteries hold significant promise due to high energy density, cost-effectiveness, and ecological sustainability, but their practical applications are constrained by suboptimal electrochemical performance and the detrimental shuttle effect. Herein, a porous, sandwich-structured composite was developed to function as a freestanding cathode designed for Li-S batteries without aluminum foil. Porous carbon nanofibers (PCNF) were employed as the conductive matrix for sulfur, with tungsten carbide (WC) being incorporated to furnish abundant active sites for polysulfide adsorption.
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Silicon is utilized as a functional material in various fields such as semiconductors, bio-medicine, and solar energy. To prepare Si materials, researchers have proposed methods including carbothermal reduction, hydrothermal reduction, and magnesiothermal reduction, but these strategies often involve high temperatures or unwanted by-products. Herein, we present a low-temperature ionic liquid reduction system to prepare Si nanospheres based on 1-butyl-3-methylimidazolium chloride-aluminum chloride ([Bmim]Cl-AlCl).
View Article and Find Full Text PDFWaste Manag
January 2025
VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland.
Battery technology has attained a key position as an energy storage technology in decarbonization of energy systems. Lithium-ion batteries have become the dominant technology currently used in consumer appliances, electric vehicles (EVs), and industrial applications. However, lithium-ion batteries are not alike and can have different cathode chemistries which makes their recycling more complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!