Antimicrobial peptides (AMPs) show great promise for enhancing food safety and extending shelf life, but traditional screening methods are complex and costly. To address these issues, we developed a deep learning-based prediction pipeline to identify potential AMPs from soil metagenomic data, achieving high accuracy (92.71 %) and precision (91.29 %). Based on model scoring, surface charge, and Hemopred and ToxinPred screenings, we identified nine candidate peptides. Peptide P4 (GTAWRWHYRARS) showed the best binding affinity to MrkH in molecular docking studies and was validated through molecular dynamics simulations. The chemically synthesized P4 demonstrated significant antimicrobial activity against Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus, indicating its potential as an effective alternative to traditional food antimicrobial agents. This study highlights the effectiveness of our integrated prediction pipeline for discovering new AMPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.142275DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
8
prediction pipeline
8
based computer
4
computer simulation
4
simulation experimental
4
experimental verification
4
verification mining
4
mining characterizing
4
characterizing novel
4
antimicrobial
4

Similar Publications

deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.

J Chem Inf Model

January 2025

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.

View Article and Find Full Text PDF

A series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)K, and heterochiral analogues containing k (d-Lys), (kkY)K and Fmoc-(kkY)K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

Improving the antimicrobial potential of the peptide CIDEM-501 through acylation: A computational approach.

Biochim Biophys Acta Biomembr

January 2025

Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba. Electronic address:

Acylation is a common method used to modify antimicrobial peptides to enhance their effectiveness. It increases the interactions between the peptide and the bacterial cell membranes. However, acylation can also reduce the selectivity of the peptides by making them more active on eukaryotic membranes, which can lead to unintended toxicity.

View Article and Find Full Text PDF

SARS-CoV-2 is from the enveloped virus family responsible for the COVID-19 pandemic. No efficient drugs are currently available to treat infection explicitly caused by this virus. Therefore, searching for effective treatments for severe illness caused by SARS-CoV-2 is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!