A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of toxicity and identification of key components for complex mixtures containing hormetic components. | LitMetric

Prediction of toxicity and identification of key components for complex mixtures containing hormetic components.

Sci Total Environ

Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China. Electronic address:

Published: December 2024

Mixtures containing hormetic components are likely to induce hormesis. However, due to the presence of stimulatory effects, predicting the toxicity of such mixtures and identifying their key components face challenges. This study investigated the complex relationship between the stimulatory effects of individual components and their mixtures, focusing on predicting mixture toxicity and identifying key components influencing this toxicity. Sixteen chemicals, commonly found in disinfectants and hand sanitizers, were selected to construct a complex mixture system containing hormetic components. Using Vibrio qinghaiensis sp.-Q67 as an indicator organism, the study employed microplate toxicity tests to collect toxicity data for individual chemicals and their mixtures. The independent action (IA) and back-propagation neural network (BPNN) methods were utilized to predict mixture toxicity, while global sensitivity analysis (GSA) identified key components affecting toxicity. Results revealed that six of the sixteen chemicals exhibited time-dependent hormesis. However, when combined into mixtures, the stimulatory effects observed in individual components tended to diminish or disappear, leading to higher overall toxicity, likely due to synergism. Traditional models like the IA significantly underestimated mixture toxicity, whereas the BPNN model demonstrated superior predictive performance. GSA identified five key components, and changes in the levels of some non-toxic components significantly altered the toxicity of the mixtures. Moreover, increasing the levels of certain key components could either increase or decrease the mixture's toxicity, making the strategy of reducing their concentration to control mixture toxicity ineffective. This study revealed the potential of neural networks in predicting the toxicity of mixtures containing hormetic components and the possible characteristics of the effects of key components on mixture toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177733DOI Listing

Publication Analysis

Top Keywords

key components
28
mixture toxicity
20
hormetic components
16
components
14
toxicity
14
mixtures hormetic
12
stimulatory effects
12
toxicity mixtures
12
mixtures
8
components mixtures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!