Metal oxide-based chemiresistive gas sensors are expected to play a significant role in assessing human health and evaluating food spoilage. However, the high operating temperature, insufficient limit of detection (LOD), and long response/recovery time restrict their broad application. Herein, 3D BiMoO/2D Eg-CN heterocomposites are developed for advanced NH gas sensors with RT operational mode. Utilizing the synergetic engineering of micro-nanostructure, surface oxygen vacancies, and well-defined Type II n-n heterojunctions, BMOCN3 demonstrated superior NH sensing properties at 23 °C, including the high response (S = 13.6 at 10 ppm), fast response/recovery speed (8/30 s), excellent selectivity, and low LOD (166 ppb). Based on the experimental, DFT, and MD studies, the improved sensing performance can be ascribed to accelerated charge transfer, superior redox capacity, and improved adsorption/desorption kinetics. Moreover, the practical application in rapid exhaled NH biomarker detection of the as-fabricated gas sensor was preliminarily verified. This work highlights that the novel synergetic engineering can effectively modulate the electronic structure and charge transfer, offering a rational solution for room temperature chemiresistive gas sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c02307 | DOI Listing |
ACS Sens
January 2025
Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
Semiconductor metal oxide (SMO) gas sensors are gaining prominence owing to their high sensitivity, rapid response, and cost-effectiveness. These sensors detect changes in resistance resulting from oxidation-reduction reactions with target gases, responding to a variety of gases simultaneously. However, their inherent limitations lie in selectivity.
View Article and Find Full Text PDFAnalyst
January 2025
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, 516007, China.
Disordered polymerization of polymers widens the polymerization degree distribution, which leads to uncontrollable thickness and significantly weakens their sensing performance. Herein, poly(sodium -styrenesulfonate)-functionalized reduced graphene oxide (PSS-rGO) with multichannel chain structures coated with thin polyaniline layer (PSS-rGO/PANI) nanocomposites was synthesized a facile interfacial polymerization route. The morphology and microstructure of the PSS-rGO/PANI nanocomposites were characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM).
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Viet Nam.
Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.
View Article and Find Full Text PDFACS Omega
January 2025
H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
The rising level of toxic gases in the environment poses a high demand for efficient gas sensing materials. MXenes, an emerging class of two-dimensional (2D) materials, have gained significant interest in this area for having an active-site rich structure, tunable surface properties, and remarkable stability. Herein, an extensive density functional theory (DFT) study is conducted to investigate the sensing properties of pristine and Au-functionalized TiC MXene for five toxic gas molecules: CO, COCl, HS, NH, and NO.
View Article and Find Full Text PDFACS Omega
January 2025
College of Resource and Environment Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China.
The inhibition of methane-air explosions by air jet-driven NaHCO powders and porous barriers was investigated in this study. Flame images and overpressure data were recorded using high-speed cameras and pressure sensors. The inhibition mechanism of NaHCO powder was further investigated using the reaction mechanism of sodium-containing substances and methane combustion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!