TonB is an essential component of an energy-generating system that powers active transport across the outer membrane (OM) of compounds that are too large or too scarce to diffuse through porins. The TonB-dependent OM transport proteins (TBDTs) consist of β barrels forming pores that are closed by plugs. The binding of TonB to TBDTs elicits plug movement, which opens the pores and enables nutrient translocation from the cell surface into the periplasm. TonB is also involved in the uptake of certain proteins, particularly toxins, through OM proteins that differ structurally from TBDTs. TonB binds to a sequence of five residues, designated as the TonB box, which is conserved in all TBDTs. Energy from the proton motive force (pmf) of the cytoplasmic membrane is transmitted to TonB by two proteins, ExbB and ExbD. These proteins form an energy-transmitting protein complex consisting of five ExbB proteins, forming a pore that encloses the ExbD dimer. This review discusses the structural changes that occur in TBDTs upon interaction with TonB, as well as the interaction of ExbB-ExbD with TonB, which is required to transmit the energy of the pmf and thereby open TBDT pores. TonB facilitates import of a wide range of substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658791PMC
http://dx.doi.org/10.1111/mmi.15332DOI Listing

Publication Analysis

Top Keywords

tonb
9
outer membrane
8
proteins
6
tbdts
5
substrate uptake
4
uptake tonb-dependent
4
tonb-dependent outer
4
membrane transporters
4
transporters tonb
4
tonb essential
4

Similar Publications

is a significant public health concern due to the emergence of antibiotic-resistant strains. Cefiderocol (FDC), a novel siderophore cephalosporin, has shown promise as a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of -acquired FDC-resistant strains highlights the need for advanced tools to identify resistance-associated genomic mutations and address the challenges of FDC susceptibility testing.

View Article and Find Full Text PDF

Defining the role of Hmu and Hus systems in Porphyromonas gingivalis heme and iron homeostasis and virulence.

Sci Rep

December 2024

Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.

Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P.

View Article and Find Full Text PDF

Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut.

View Article and Find Full Text PDF

TonB is an essential component of an energy-generating system that powers active transport across the outer membrane (OM) of compounds that are too large or too scarce to diffuse through porins. The TonB-dependent OM transport proteins (TBDTs) consist of β barrels forming pores that are closed by plugs. The binding of TonB to TBDTs elicits plug movement, which opens the pores and enables nutrient translocation from the cell surface into the periplasm.

View Article and Find Full Text PDF

Bacterial TonB-dependent transducers interact with the anti-σ factor in absence of the inducing signal protecting it from proteolysis.

PLoS Biol

December 2024

Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain.

Competitive bacteria like the human pathogen Pseudomonas aeruginosa can acquire iron from different iron carriers, which are usually internalized via outer membrane TonB-dependent receptors (TBDRs). Production of TBDRs is promoted by the presence of the substrate. This regulation often entails a signal transfer pathway known as cell-surface signaling (CSS) that involves the TBDR itself that also functions as transducer (and is thus referred to as TBDT), a cytoplasmic membrane-bound anti-σ factor, and an extracytoplasmic function σ (σECF) factor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!