The efficient conversion of cellulose into glucose is critical for advancing sustainable biofuels and bioproducts. Traditional methods face significant challenges, including inefficiencies and environmental concerns, highlighting the need for innovative catalytic systems. In this study, we successfully synthesized three hydroxyl-rich carbon-based solid acid catalysts─S-catalyzer, P-catalyzer, and C-catalyze. Utilizing an aqueous hydrothermal system, the S-catalyzer, characterized by high hydroxyl content and -SOH groups, effectively mimicked cellulase activity, breaking glycosidic bonds and achieving a glucose yield of 68% with a cellulose conversion rate of 97.2% within 120 min. The catalysts also demonstrated remarkable recyclability, maintaining over 90% conversion efficiency across multiple cycles. This stability is attributed to the robustness of hydroxyl and -SOH groups and the recycling of glucose as a carbonation substrate in a closed-loop system. Our findings provide a novel, environmentally sustainable method for cellulose hydrolysis, offering significant potential for scalable biofuel production and broader biotechnological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.4c01382 | DOI Listing |
J Biotechnol
January 2025
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:
In our previous study, the whole cells containing an aldo-keto reductase (yhdN) and glucose dehydrogenase (GDH) were constructed and applied in a stereoselective carbonyl reduction reaction to prepare (S)-NEMCA-HEPE, being a key chiral intermediate of (S)-Rivastigmine which is widely prescribed for the treatment of Alzheimer's disease. Although the conversion and enantiomeric excess (e.e.
View Article and Find Full Text PDFNat Metab
January 2025
Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev Trg 19, HR-10000 Zagreb, Croatia.
Enzymatic reactions play an important role in numerous industrial processes, e.g., in food production, pharmaceuticals and the production of biofuels.
View Article and Find Full Text PDFWaste Manag
December 2024
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:
Biomed Chromatogr
January 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
An animal model of radiation-induced lung injury (RILI) was established using female rats given sublethal whole-thorax X-ray irradiation (15 Gy) at a dose rate of 2.7 Gy/min. The rats were studied for up to day 45 and compared with sham-irradiated controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!