To expand the potential applications of raw lacquer, snowman-like polystyrene (PS)-urushiol lanthanum (ULa) Janus composite particles were synthesized by emulsion swelling-assisted protrusion from PS/ULa core-shell composite microspheres. The morphology and chemical composition of the PS/ULa composite microspheres and the PS-ULa Janus composite particles were investigated with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR). The PS-ULa Janus particles were compartmentalized into two parts, each with a different morphology and chemical composition. Results showed that the intact ULa shell with appropriate thickness is a crucial factor for controllable swelling, and the thickness of the PS/ULa core-shell composite microsphere could be controlled by polymerization temperature. This anisotropic Janus particle exhibits potential applications in orienting materials, such as directional catalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614236 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314449 | PLOS |
J Colloid Interface Sci
December 2024
National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China. Electronic address:
Due to the high theoretical energy density, lithium-carbon dioxide (Li-CO) batteries provide unique advantages when using CO to generate electricity. However, the issues with lithium dendrite generated by uneven deposition and quick cathode passivation continue to impede the development of Li-CO batteries. In this work, a Janus separator with dual functionalities is created using an in-situ growth and hydrothermal technique.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
Developing lightweight polymer shielding membranes with additional physicochemical properties is of great significance for addressing the complex contemporary security demands. However, precise structural design at the molecular level remains a challenge. Herein, a unique Janus composite membrane is assembled from conductive AgNWs/MXene 1D/2D network and polyurethane elastomer (MPHEA), displaying combined superior electromagnetic shielding effectiveness (EMSE) of up to 80 dB and remarkable infrared stealth capability at a wide temperature range of room temperature to 50 °C.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, PR China. Electronic address:
Hemostasis and subsequent anti-inflammatory measures are essential for wound healing in the human body following trauma or surgical procedures. Here, we try to use the dragging effect of a brush to prepare a Janus hydrogel with the least amount of bacteriostatic agent. The synthesized suspension of polyvinylbenzene-silica@quaternary ammonium salt (PDVB-SiO@NR) Janus particles (JNPs) was selected as ink and brush coated onto one side of a polyacrylic acid (PAA) hydrogel, resulting in Janus hydrogel (JNPs≌PAA).
View Article and Find Full Text PDFBioact Mater
March 2025
Department of Biosystems Engineering, Kangwon National University, 24341, Chuncheon, Republic of Korea.
Biomaterial composition and surface charge play a critical role in macrophage polarization, providing a molecular cue for immunomodulation and tissue regeneration. In this study, we developed bifunctional hydrogel inks for accelerating M2 macrophage polarization and exosome (Exo) cultivation for wound healing applications. For this, we first fabricated polyamine-modified three-dimensional (3D) printable hydrogels consisting of alginate/gelatin/polydopamine nanospheres (AG/NSPs) to boost M2-exosome (M2-Exo) secretion.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
Magnetic Janus particles (MJPs) with compositional compartmentalization and strong magnetic responsiveness play a pivotal role in various application fields, such as biotechnology, medicine, and materials science. However, comprehensive reviews of the field of MJPs remain limited. Here, this article attempts to fill the gap by reviewing the current common synthetic strategies for MJPs, including masking, microfluidics, self-assembly, phase separation, and seeded emulsion polymerization, among others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!