New Insight into Industrial Lignin Intermolecular Force Heterogeneity Mitigation: Monodispersed Lignin Colloidal Sphere Synthesis and Full Biomass Photonic Material Preparation.

J Agric Food Chem

Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.

Published: December 2024

Industrial lignin is an underutilized resource from the pulping industry due to its high heterogeneity. The transformation of industrial lignin into monodispersed lignin colloidal spheres (LCSs) for the preparation of advanced biomass photonic materials is particularly appealing, because of their unique biocompatibility. However, the LCSs synthesized from industrial lignin generally show a wide size distribution and thus limit this specific application. To address the issue, selective functionalization was carried out to convert phenolic and aliphatic -OH groups into ester groups, decreasing the LCS size distribution to a monodispersing degree. Simulation analysis revealed that the functionalization had narrowed the difference of C-O linkage electron cloud distribution and led to a lignin polarity decrease. Additionally, atomic force microscopy (AFM) quantification of lignin proved a force distribution index (FDI) decrease from 0.38 to 0.11, which was consistent with the LCS polymer dispersity index (PDI) decrease from 0.182 to 0.05. The photonic materials can be readily prepared from monodispersed LCSs with the color precisely adjusted by controlling LCS particle sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c07164DOI Listing

Publication Analysis

Top Keywords

industrial lignin
16
lignin
8
monodispersed lignin
8
lignin colloidal
8
biomass photonic
8
photonic materials
8
size distribution
8
insight industrial
4
lignin intermolecular
4
intermolecular force
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!