A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Particulate matter estimation using satellite datasets: a machine learning approach. | LitMetric

Particulate matter estimation using satellite datasets: a machine learning approach.

Environ Sci Pollut Res Int

Space Applications Centre, Indian Space Research Organization (ISRO), Ahmedabad, India.

Published: December 2024

In the present work, it is the first time an interpretable machine learning model has been developed for the estimation of Particulate Matter 10 µm (PM) concentrations over India using Aerosol Optical Depth (AOD) from two different satellites, i.e. INSAT-3D and Moderate Resolution Imaging Spectroradiometer (MODIS) for the period of 7 years (2014 to 2020). Ground datasets of AOD are taken from the Aerosol Robotic Network (AERONET) for the validation of satellite-retrieved AOD. The observation of particulate matter (PM) data is acquired from the Central Pollution Control Board (CPCB) station across India. Analysis has been performed on a monthly basis for the given time period. The result shows that AOD products of MODIS exhibit good correlation with AERONET AOD whereas INSAT-3D AOD is not well correlated with AERONET AOD. However, after applying an error envelope and threshold-based filtering technique, we have found that INSAT-3D shows significant correlation with ground-level AOD with approximate correlation of 0.66 for Jaipur and 0.57 for Kanpur exhibiting almost similar performance as MODIS-derived AOD. Satellite AOD data together with ground PM concentration data is used to train the machine learning model (random forest) for the estimation of the PM distribution across India for the year 2020. An encouraging correlation of R-squared (R) value 0.78 has been observed between the estimated and observed PM concentrations. The model demonstrates effective training, mitigating huge overestimation and underestimation. However, despite closely tracking the trends of estimated PM with observed PM, few instances of overestimation persist. This suggests the need for an expanded training dataset to further refine and enhance the model's accuracy. Finally, the machine learning model used for PM estimation is found to be optimal for a calibrated satellite AOD product.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35564-0DOI Listing

Publication Analysis

Top Keywords

machine learning
16
particulate matter
12
learning model
12
aod
11
aeronet aod
8
satellite aod
8
estimated observed
8
estimation
4
matter estimation
4
estimation satellite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!