Chitin, a natural organic compound with content slightly lower than cellulose, is also known for chitosan, a substance derived from chitin through deacetylation. In this experiment, preliminary screening was conducted using the plate discoloration circle method, leading to the selection of a high-yield CDA-producing strain from 28 candidates through rescreening. Morphological characteristics and 16S rDNA sequence analysis revealed 99.93% homology with Enterobacter sichuanensis strain N24, thus naming this strain Enterobacter strain ZCDA27. Initial fermentation of the strain yielded CDA activity of 9.29 U/mL. Single-factor optimization was then performed, followed by a PB test to screen for significant factors affecting enzyme production. The response surface method was used to further optimize the fermentation conditions. The optimal fermentation conditions for the carbon source, nitrogen source, metal ion, fermentation temperature, time, liquid volume, and initial pH were explored. Significant factors affecting enzyme production, including MgSO, initial medium pH, and fructose levels, were identified using the PB test. Finally, the fermentation conditions of ZCDA27 were optimized using the Box-Behnken design combined with RSM, which comprised fructose at 1.020%, magnesium sulfate at 0.016%, and peptone at 1%. The fermentation conditions included a temperature of 37, initial pH of 7.1, rotation speed of 140 × g, fermentation time of 28 h, inoculation amount of 2%, and liquid volume of 40%. Under these conditions, the enzyme activity of ZCDA27 reached 14.52 U/mL, a 1.6-fold increase from the pre-optimization levels. In summary, this study provides an experimental foundation for further development and application of Enterobacter spp. ZCDA27 CDA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-024-05124-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!