Aptamer-based biosensors with a low cost and high specificity have been widely applied in diagnostics, food safety, and environmental monitoring. However, aptamer-based biosensors still suffer from insufficient specificity or affinity owing to the inherent constraints of the thermodynamic and kinetic binding properties of aptamers. Therefore, optimization technologies for various aptamers have been proposed to obtain high-affinity aptamers for constructing high-performance biosensors. In this review, emerging technologies for aptamer screening are summarized, followed by a focus on analyzing methods for aptamer optimization, including ligand truncation, mutation, splitting, elongation, chemical modification, and potential mechanisms. Portable aptamer-integrated optical and electrochemical devices applied to food safety point-of-care testing (POCT) platforms are reviewed to provide a reference for addressing the lack of convenience faced by aptasensors. Finally, future challenges and directions of aptamer optimization technology are discussed for further research and development in food safety detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2024.2436647 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!