Cerebral ischemic stroke is a major cerebrovascular disease and the leading cause of adult disability. We and others previously demonstrated that transplantation of human Wharton's jelly mesenchymal stromal cells (WJ-MSCs) attenuated neuronal damage and promoted functional improvement in stroke animals. This study aimed to investigate the protective effects of human WJ-MSC exosome (Exo) transplant in cellular and rat models of cerebral stroke. Administration of Exo significantly antagonized glutamate-mediated neuronal loss and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-X nick end labeling (TUNEL) in rat primary cortical neuronal cultures. Adult male rats underwent a 60-min middle cerebral artery occlusion (MCAo); Exo or vehicle was injected through the tail vein 5-10 min after the MCAo. Two days later, the rats underwent a series of behavioral tests. Stroke rats receiving Exo developed a significant improvement in locomotor function and forelimb strength while reductions in body asymmetry and Bederson's neurological score. After the behavioral test, brain tissues were harvested for histological and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analyses. Animals receiving Exo had less infarction volume, measured by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Transplantation of Exo increased the expression of protective neurotrophic factors (BMP7, GDNF) and anti-apoptotic factors (Bcl2, Bcl-xL) in the ischemic brain. These findings suggest that early post-treatment with WJ-MSC Exo, given non-invasively through the vein, improved functional recovery and reduced brain damage in the stroke brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613244 | PMC |
http://dx.doi.org/10.1177/09636897241296366 | DOI Listing |
Tissue Cell
December 2024
Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
Objective: Mitochondria transfer from human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs-mt) and human endometrium-derived mesenchymal stem cells (hE-MSCs-mt), along with curcumin, were explored as potential treatments for age-related macular degeneration (AMD) caused by mitochondrial inefficiency, using a retinal model to assess impacts of curcumin and hWJ-MSCs-mt or hE-MSCs-mt on AMD.
Methods: ARPE-19 cells established an in vitro AMD model. Cells were exposed to 0-50 μM curcumin for 24 hours to determine optimal concentration by assessing their viability.
Alzheimers Dement
December 2024
Department of Neurology, Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA.
The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.
Chronic kidney disease (CKD) affects more than 10% of the world's population. Hemodialysis, along with peritoneal dialysis and renal transplant, is one of the renal replacement therapies offered to patients with CKD/end-stage renal disease (ESRD). To proceed with hemodialysis, vascular access is required.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Department of Orthopaedics and Rehabilitation Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
3D-printed microporous titanium scaffolds enjoy good biointegration with the residuum's soft and bone tissues, and they promote excellent biomechanical properties in attached prostheses. Implant-associated infection, however, remains a major clinical challenge. Silver-based implant coatings can potentially reduce bacterial growth and inhibit biofilm formation, thereby reducing the risk of periprosthetic infections.
View Article and Find Full Text PDFBiomed Mater
December 2024
Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran, Tehran, 1497713115, Iran (the Islamic Republic of).
Regenerative medicine by applying tissue engineering and cell transplantation has provided a new door in wound healing. This study tracked healing effect of human Wharton's jelly stem cells (WJSCs) labeled with superparamagnetic iron oxide nanoparticles (SPIONs) seeded onto poly vinyl alcohol/chitosan/carbon nanotubes (PVA/CS/CNT) in burn wounds by magnetic resonance imaging (MRI) and Prussian Blue staining. .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!