A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Auxiliary diagnosis of primary bone tumors based on Machine learning model. | LitMetric

AI Article Synopsis

  • The study focuses on improving the diagnosis of primary bone tumors through machine learning and a comprehensive whole slide imaging (WSI) database of histopathological samples.
  • By using deep convolutional neural networks (DC-NN) along with imaging omics analysis, the researchers assessed the clinical value and accuracy of their diagnostic models.
  • Results showed high diagnostic accuracy for distinguishing between normal and tumor images, with impressive metrics indicating potential for better detection of primary bone tumors, including benign versus malignant classifications.

Article Abstract

Objective: Research on auxiliary diagnosis of primary bone tumors can enhance diagnostic accuracy, facilitate early detection, and enable personalized treatment, thereby reducing misdiagnosis and missed cases, ultimately leading to improved patient prognosis and survival rates. In this study, we established a whole slide imaging (WSI) database comprising histopathological samples from all categories of bone tumors and integrated multiple neural network architectures for machine learning models. We then evaluated the accuracy of these models in diagnosing primary bone tumors.

Methods: In this paper, the machine learning model based on the deep convolutional neural network (DC-NN) method was combined with imaging omics analysis to analyze and discuss its clinical value in diagnosing primary bone tumors. In addition, this paper proposed a screening method for differentially expressed genes. Based on the paired T-test method, the process first estimated the tumor purity in the experimental data of each sample case, then assessed the actual gene expression value of the experimental data of each sample case, and finally calculated the optimized paired T-test statistics, and screened differentially expressed genes according to the threshold value.

Results: The selected model demonstrated excellent diagnostic accuracy in distinguishing between normal and tumor images, with overall accuracy of (99.8 ± 0.4) % for five rounds of testing using the DCNN model and positive and negative predictive values of (100.0 ± 0.0) % and (99.6 ± 0.8) %, respectively. The mean area under each dataset's curve (AUC) was (0.998 ± 0.004). Further, ten rounds of testing using the DCNN model showed an overall accuracy of (71.2 ± 1.6) % and a substantial positive predictive value of (91.9 ± 8.5) % in distinguishing benign from malignant bone tumors, with an average AUC of (0.62 ± 0.06) across datasets.

Conclusion: The deep learning model accurately classifies bone tumor histopathology based on the degree of infiltration, achieving diagnostic performance comparable to that of senior pathologists. These findings affirm the feasibility and effectiveness of histopathological diagnosis in bone tumors, providing a theoretical foundation for the application and advancement of machine learning-assisted histopathological diagnosis in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609325PMC
http://dx.doi.org/10.1016/j.jbo.2024.100648DOI Listing

Publication Analysis

Top Keywords

bone tumors
24
primary bone
16
machine learning
12
learning model
12
auxiliary diagnosis
8
diagnosis primary
8
bone
8
diagnostic accuracy
8
neural network
8
diagnosing primary
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!