A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of transient, persistent, and resurgent sodium currents on excitability and spike regularity in vestibular ganglion neurons. | LitMetric

AI Article Synopsis

  • Vestibular afferent neurons are classified into two types based on their spike timing regularity—regular (more excitable with lower thresholds) and irregular (less excitable with higher thresholds)—with distinct expressions of potassium (K) channels influencing these traits.
  • Researchers conducted experiments on mouse vestibular ganglion neurons to explore the effects of various sodium (Na) current types (transient, persistent, and resurgent) on spiking behavior, finding that different Na currents affect spike rates and patterns in both regular and irregular neurons.
  • Modeling suggested that while increasing transient Na current raises spike rates universally, persistent Na current enhances regularity and rate in sustained neurons but has a minimal effect in transient neurons.

Article Abstract

Vestibular afferent neurons occur as two populations with differences in spike timing regularity that are independent of rate. The more excitable regular afferents have lower current thresholds and sustained spiking responses to injected currents, while irregular afferent neurons have higher thresholds and transient responses. Differences in expression of low-voltage-activated potassium (K) channels are emphasized in models of spiking regularity and excitability in these neurons, leaving open the potential contributions of the voltage-gated sodium (Na) channels responsible for the spike upstroke. We investigated the impact of different Na current modes (transient, persistent, and resurgent) with whole-cell patch clamp experiments in mouse vestibular ganglion neurons (VGNs), the cultured and dissociated cell bodies of afferents. All VGNs had transient Na current, many had a small persistent (non-inactivating) Na current, and a few had resurgent current, which flows after the spike when Na channels that were blocked are unblocked. A known Na1.6 channel blocker decreased spike rate and altered spike waveforms in both sustained and transient VGNs and affected all three modes of Na current. A Na channel agonist enhanced persistent current and increased spike rate and regularity. We hypothesized that persistent and resurgent currents have different effects on sustained (regular) VGNs vs. transient (irregular) VGNs. Lacking blockers specific for the different current modes, we used modeling to isolate their effects on spiking of simulated transient and sustained VGNs, driven by simulated current steps and noisy trains of simulated EPSCs. In all simulated neurons, increasing transient Na current increased spike rate and rate-independent regularity. In simulated sustained VGNs, adding persistent current increased both rate and rate-independent regularity, while adding resurgent current had limited impact. In transient VGNs, adding persistent current had little impact, while adding resurgent current increased both rate and rate-independent irregularity by enhancing sensitivity to synaptic noise. These experiments show that the small Na current modes may enhance the differentiation of afferent populations, with persistent currents selectively making regular afferents more regular and resurgent currents selectively making irregular afferents more irregular.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608953PMC
http://dx.doi.org/10.3389/fneur.2024.1471118DOI Listing

Publication Analysis

Top Keywords

current increased
16
current
15
persistent resurgent
12
current modes
12
resurgent current
12
spike rate
12
persistent current
12
rate rate-independent
12
persistent
8
transient persistent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!