A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CFD analysis of non-Newtonian blood flow through human carotid artery bifurcation: Carotid sinus susceptible to atherosclerosis. | LitMetric

Fat accumulation on the arteries' walls has become a serious health concern. This study conducted an in-depth hemodynamic analysis to identify the regions of a human carotid artery most susceptible to fat accumulation or atherosclerosis, considering the following factors: blood velocity, secondary flow regions, pressure, and wall shear stress. The hemodynamic analysis used a generalized geometric model to analyze these factors at various locations within the carotid bifurcation over different time points. Results showed that the bifurcation region is comparatively more affected by the factors contributing to atherosclerosis. Especially, the sinus region experiences all the key factors: a larger secondary flow, higher blood pressure, lower mean WSS, and lower fluctuation in temporal WSS. The findings indicate that the bifurcation region, particularly the sinus is prone to fat accumulation. These results are consistent with clinical observations, emphasizing the bifurcation and sinus regions as key sites for plaque accumulation. Insights from this analysis will serve as a foundation for optimizing geometric models of bifurcated arteries to improve blood flow and, consequently, reduce the risk of atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609460PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e40286DOI Listing

Publication Analysis

Top Keywords

fat accumulation
12
blood flow
8
human carotid
8
carotid artery
8
hemodynamic analysis
8
secondary flow
8
bifurcation region
8
bifurcation
5
cfd analysis
4
analysis non-newtonian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!