A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Digital instrument simulator to optimize the development of hyperspectral systems: application for intraoperative functional brain mapping. | LitMetric

Significance: Intraoperative optical imaging is a localization technique for the functional areas of the human brain cortex during neurosurgical procedures. These areas can be assessed by monitoring cerebral hemodynamics and metabolism. Robust quantification of these biomarkers is complicated to perform during neurosurgery due to the critical context of the operating room. In actual devices, the inhomogeneities of the optical properties of the exposed brain cortex are poorly taken into consideration, which introduce quantification errors of biomarkers of brain functionality. Moreover, the best choice of spectral configuration is still based on an empirical approach.

Aim: We propose a digital instrument simulator to optimize the development of hyperspectral systems for intraoperative brain mapping studies. This simulator can provide realistic modeling of the cerebral cortex and the identification of the optimal wavelengths to monitor cerebral hemodynamics (oxygenated and deoxygenated hemoglobin Hb) and metabolism (oxidized state of cytochromes and and cytochrome-c-oxidase oxCytb, oxCytc, and oxCCO).

Approach: The digital instrument simulator is computed with white Monte Carlo simulations of a volume created from a real image of exposed cortex. We developed an optimization procedure based on a genetic algorithm to identify the best wavelength combinations in the visible and near-infrared range to quantify concentration changes in , Hb, oxCCO, and the oxidized state of cytochrome and (oxCytb and oxCytc).

Results: The digital instrument allows the modeling of intensity maps collected by a camera sensor as well as images of path length to take into account the inhomogeneities of the optical properties. The optimization procedure helps to identify the best wavelength combination of 18 wavelengths that reduces the quantification errors in , Hb, and oxCCO by 47%, 57%, and 57%, respectively, compared with the gold standard of 121 wavelengths between 780 and 900 nm. The optimization procedure does not help to resolve changes in cytochrome and in a significant way but helps to better resolve oxCCO changes.

Conclusions: We proposed a digital instrument simulator to optimize the development of hyperspectral systems for intraoperative brain mapping studies. This digital instrument simulator and this optimization framework could be used to optimize the design of hyperspectral imaging devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610766PMC
http://dx.doi.org/10.1117/1.JBO.30.2.023513DOI Listing

Publication Analysis

Top Keywords

digital instrument
24
instrument simulator
20
simulator optimize
12
optimize development
12
development hyperspectral
12
hyperspectral systems
12
brain mapping
12
optimization procedure
12
brain cortex
8
cerebral hemodynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!