Silymarin administration after cerebral ischemia improves survival of obese mice by increasing cortical BDNF and IGF1 levels.

Front Aging Neurosci

Facultad de Medicina, Unidad de Medicina Experimental "Ruy Pérez Tamayo", Universidad Nacional Autónoma de México, Mexico City, Mexico.

Published: November 2024

Background: Obesity is associated with a systemic inflammatory state that contributes to neuroinflammation and increases the risk of stroke at an early age. Stroke is the third leading cause of death worldwide and the leading cause of permanent disability. This work aimed to assess whether obesity-induced neuroinflammation can be a prognostic stroke factor that can be improved with oral administration of silymarin, an anti-inflammatory and neuroprotective drug.

Methods: Male C57/Bl6 mice were used to establish an obesity model through a high-fat diet (HFD) for 12 weeks. Cerebral ischemia was performed with photothrombosis in the left motor cortex at the end of the diet. Following the induction of ischemia, silymarin (100 mg/kg) was administered orally for 14 days. Levels of pro-inflammatory (IL1β, TNFα, and MCP1) and anti-inflammatory markers (IL4, IL10), neurotrophic factors (IGF1, BDNF), and CX3CL1 were assessed in the cortex and striatum using ELISA.

Results: Mice on the HFD gained significantly more weight than control subjects and exhibited altered glucose metabolism, which was improved after silymarin treatment. The survival rate was significantly lower in HFD mice (52.2%) compared to control mice (86%). Silymarin treatment improved survival in both ischemic groups (non-diet control: 95.7%, HFD: 78.3%). Silymarin raised cortical TNFα, IL4, IL10, IGF1, BDNF, and CX3CL1 levels in the HFD group with stroke, while the striatum did not present relevant differences.

Conclusion: Our findings suggest that silymarin improves glucose metabolism, possibly impacting post-stroke survival in obese mice. The increased levels of neurotrophic factors BDNF and IGF1, along with microglial regulatory factor CX3CL1, may contribute to the improved survival observed. These results indicate that silymarin could be a potential therapeutic option for managing neuroinflammation and enhancing post-stroke outcomes in obese individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609184PMC
http://dx.doi.org/10.3389/fnagi.2024.1484946DOI Listing

Publication Analysis

Top Keywords

silymarin
8
cerebral ischemia
8
survival obese
8
obese mice
8
bdnf igf1
8
il4 il10
8
neurotrophic factors
8
igf1 bdnf
8
bdnf cx3cl1
8
glucose metabolism
8

Similar Publications

Graphene oxide and silymarin combination: A novel approach to improving post-cryopreservation quality of ram sperm.

Cryobiology

January 2025

Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran. Electronic address:

Graphene oxide (GO) has been extensively studied for its diverse biomedical applications, including drug delivery, imaging, and tissue engineering. Silymarin, as a flavonoid complex derived from the milk thistle plant, has recently shown potential health benefits, particularly concerning reproductive health. This study aims to evaluate the effects of GO and silymarin supplementation, both individually and in combination, on the characteristics of frozen-thawed ram sperm.

View Article and Find Full Text PDF

Purpose Of Review: This narrative review explores the role of Medical Nutritional Therapy (MNT) in managing Metabolic-Associated Steatotic Liver Disease (MASLD), previously known as nonalcoholic fatty liver disease. It aims to examine the effectiveness of specific nutritional strategies in preventing and treating this obesity-linked liver disease.

Recent Findings: Emerging evidence underscores the benefits of the Mediterranean diet, low-carbohydrate diets, and intermittent fasting in reducing liver fat, improving insulin sensitivity, and mitigating inflammation.

View Article and Find Full Text PDF

Background: Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by damage and inflammation of hepatocytes. Some medicinal plants have shown antioxidant and anti-inflammatory effects on liver cells. We aimed to investigate the hepatoprotective effect of Heptex® capsules containing 200 mg of Dukung Anak (a powdered extract from aerial parts of Phyllanthus niruri) and 100 mg of Milk Thistle (a powdered extract from fruits of Silybum marianum) in patients with an apparent risk factor for NASH.

View Article and Find Full Text PDF

Silibinin alleviates acute liver failure by modulating AKT/GSK3β/Nrf2/GPX4 pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China.

Silibinin (Sil) is a major bioactive component of silymarin, extracted from the fruit and seeds of Silybum marianum. Silibinin meglumine (SM) is a water-soluble derivative of silibinin that has shown significant potential in liver fibrosis. However, the potential effects and underlying mechanisms of SM on acute liver failure (ALF) are still not fully understood.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Argemone mexicana L. (Papaveraceae), a weed that thrives in the tropical and subtropical areas of South and Central America, Mexico, Caribbean Islands and India. In India, it has been used traditionally to treat vesicular calculus, inflammatory conditions, and hepatobiliary disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!