A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A retrospective approach for evaluating ecological niche modeling transferability over time: the case of Mexican endemic rodents. | LitMetric

A retrospective approach for evaluating ecological niche modeling transferability over time: the case of Mexican endemic rodents.

PeerJ

Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Published: December 2024

Ecological niche modeling (ENM) is a valuable tool for inferring suitable environmental conditions and estimating species' geographic distributions. ENM is widely used to assess the potential effects of climate change on species distributions; however, the choice of modeling algorithm introduces substantial uncertainty, especially since future projections cannot be properly validated. In this study, we evaluated the performance of seven popular modeling algorithms-Bioclim, generalized additive models (GAM), generalized linear models (GLM), boosted regression trees (BRT), Maxent, random forest (RF), and support vector machine (SVM)-in transferring ENM across time, using Mexican endemic rodents as a model system. We used a retrospective approach, transferring models from the near past (1950-1979) to more recent conditions (1980-2009) and vice versa, to evaluate their performance in both forecasting and hindcasting. Consistent with previous studies, our results highlight that input data quality and algorithm choice significantly impact model accuracy, but most importantly, we found that algorithm performance varied between forecasting and hindcasting. While no single algorithm outperformed the others in both temporal directions, RF generally showed better performance for forecasting, while Maxent performed better in hindcasting, though it was more sensitive to small sample sizes. Bioclim consistently showed the lowest performance. These findings underscore that not all species or algorithms are suited for temporal projections. Therefore, we strongly recommend conducting a thorough evaluation of the data quality-in terms of quantity and potential biases-of the species of interest. Based on this assessment, appropriate algorithm(s) should be carefully selected and rigorously tested before proceeding with temporal transfers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610470PMC
http://dx.doi.org/10.7717/peerj.18414DOI Listing

Publication Analysis

Top Keywords

retrospective approach
8
ecological niche
8
niche modeling
8
mexican endemic
8
endemic rodents
8
performance forecasting
8
forecasting hindcasting
8
performance
5
approach evaluating
4
evaluating ecological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!