AI Article Synopsis

  • - Trihelix transcription factors (TF) are unique proteins with a three-helix structure that play vital roles in plant development and stress response, but their functions in potatoes are not well-studied.
  • - The study identified and characterized 43 StMSL genes in the potato genome, revealing their distribution across chromosomes and potential involvement in specific functions, as indicated by structural analysis and phylogenetic grouping.
  • - RNA-Seq analysis found that many of these StMSL genes are expressed in various tissues, with some upregulated during osmotic stress, suggesting their significance in plant stress responses and developmental processes.

Article Abstract

Trihelix transcription factors (TF) are photoresponsive proteins featuring a characteristic three-helix structure (helix-loop-helix-loop-helix) and contain the Myb/SANT-LIKE (MSL) domain. They perform crucial functions in the development and stress-response of plants. However, the function of the Trihelix TF in potato ( L.) remains unknown. In the present study, forty-three s were characterized in the potato genome and named to . Structural domain analysis revealed that motifs 1 and 2 may play a central role in the implementation of trihelix gene functions, and motifs 4 and 9 may be related to specific functions of StMSL. Phylogenetic analysis divided the StMSLs into six groups (SIP1, GT1, GT2, GTγ, SH4 and GT3). The GT3 group, which is rarely identified in the Trihelix TF family, contained three StMSLs. The 43 StMSLs were unevenly distributed on 12 chromosomes in potato and comprised two pairs of tandem duplication and five pairs of segmental duplication genes. Additionally, RNA-Seq analysis found that 36 out of the 43 were expressed in at least one of the 12 tissues, with some exhibiting tissue-specific expression patterns. Trihelix transcriptional regulation network analysis identified 387 genes as potential targets of the 36 StMSL genes, and these genes have a wide variety of functions. Furthermore, RNA-Seq analysis revealed that at least 18 were upregulated in response to osmotic stress. The induced pattern of eight was subsequently validated using qRT-PCR. This study provides a detailed insight into the StMSLs of the potato and lays the foundation for further analysis of the functions of the Trihelix gene in plant development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610473PMC
http://dx.doi.org/10.7717/peerj.18578DOI Listing

Publication Analysis

Top Keywords

trihelix transcription
8
analysis revealed
8
trihelix gene
8
rna-seq analysis
8
analysis
7
trihelix
7
potato
5
functions
5
genome-wide identification
4
identification expression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!