Nucleus pulposus (NP) cells, situated at the core of intervertebral discs, have acclimated to a hypoxic environment, orchestrating the equilibrium of extracellular matrix metabolism (ECM) under the regulatory influence of hypoxia inducible factor-1α (HIF-1α). Neovascularization and increased oxygen content pose a threat, triggering ECM degradation and intervertebral disc degeneration (IVDD). To address this, our study devised an oxygen-controllable strategy, introducing laccase into an injectable and ultrasound-responsive gelatin/agarose hydrogel. Laccase-mediated reactions were employed to deplete oxygen, establishing a hypoxic microenvironment that upregulated HIF-1α expression. The activation of hypoxia-inducible factors significantly enhanced the expression of aggrecan and collagen II, concurrently suppressing Matrix metalloproteinases (MMP13) and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS5) levels, thereby restoring the equilibrium of ECM metabolism. Simultaneously, the hydrogel facilitated the recruitment of stem cells into the NP through the controlled release of ATI2341, activating C-X-C chemokine receptor type 4 (CXCR4). Moreover, ultrasound amplification enhanced ATI2341 release, promoting the migration of NP stem cells. The hydrogel's efficacy in mitigating metabolic imbalances and inhibiting IVDD progression was substantiated in a rat puncture IVDD model through hydrogel injection into the discs. In conclusion, this hypoxia-inducible hydrogel, responsive to thermal stimuli from ultrasound, presents a promising avenue for IVDD treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609683PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101252DOI Listing

Publication Analysis

Top Keywords

intervertebral disc
8
disc degeneration
8
extracellular matrix
8
matrix metabolism
8
stem cells
8
hydrogel
5
oxygen-controllable injectable
4
injectable hydrogel
4
hydrogel alleviates
4
alleviates intervertebral
4

Similar Publications

Objective: Awake, endoscopic spinal fusion has been utilized as an ultra-minimally invasive surgery technique to accomplish the goals of spinal fixation, fusion, and disc height restoration. While many techniques exist for this approach, this series represents a single institution's experience with a large cohort and the evolution of this method.

Methods: The medical records of a consecutive series of 400 patients treated over a 10-year period were retrospectively reviewed.

View Article and Find Full Text PDF

This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.

View Article and Find Full Text PDF

Accurate calibration of finite element (FE) models is essential across various biomechanical applications, including human intervertebral discs (IVDs), to ensure their reliability and use in diagnosing and planning treatments. However, traditional calibration methods are computationally intensive, requiring iterative, derivative-free optimization algorithms that often take days to converge. This study addresses these challenges by introducing a novel, efficient, and effective calibration method demonstrated on a human L4-L5 IVD FE model as a case study using a neural network (NN) surrogate.

View Article and Find Full Text PDF

Background: There are differences in the extent of excision of articular processes, spinal processes and posterior ligamentum complexes (PLC) for posterior approach lumbar interbody fusion. Given that the biomechanical significance of these structures has been verified and that deterioration of the biomechanical environment is the main trigger for complications in both fused and adjacent motion segments, changes in decompression ranges may affect the potential risk of adjacent segmental disease (ASD) biomechanically; however, this topic has yet to be identified.

Methods: Posterior lumbar interbody fusion (PLIF) with different decompression strategies was simulated in a well-validated lumbosacral model.

View Article and Find Full Text PDF

Study Design: Prospective biochemical study of comparison of A Disintegrin and Metalloproteinase with Thrombospondin motifs-4 (ADAMTS-4) and A Disintegrin and Metalloproteinase with Thrombospondin motifs 5 (ADAMTS5) levels in preoperative and postoperative venous blood, as well as in disc tissue obtained during surgery, in patients undergoing surgery for intervertebral disc disease, with enzyme levels in venous blood from a control group.

Objective: To compare the levels of ADAMTS-4 and ADAMTS-5 between patients with degenerative intervertebral discs and a healthy control group, aiming to identify biomarkers associated with intervertebral disc degeneration.

Literature: Although numerous studies have investigated the relationship between ADAMTS-4 and ADAMTS-5 enzymes and degeneration in experimental rat models and human tissues, no study has correlated their serum levels with intervertebral disc degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!