Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Mild cognitive impairment (MCI) refers to a memory impairment among non-demented adults. It is a condition that increases the risk of dementia, notably due to Alzheimer's disease (AD). MCI is heterogeneous and there is a need for novel diagnostic approaches. Fluorodeoxyglucose positron emission tomography (FDG-PET) imaging provides robust AD biomarker characteristics, while anatomical and functional magnetic resonance imaging (MRI) offer complementary information.
Objective: Classify MCI and cognitively normal (CN) adults using FDG-PET images; predict individuals with MCI that convert to AD dementia; determine if MRI can achieve comparable performance to FDG-PET classification.
Methods: Four ADNI cohorts were created. Cohort 1: 805 participants (MCI n = 455; CN n = 350) that underwent FDG-PET. FDG-PET images were inputs to a one-channel 3-dimensional (3D) DenseNet deep learning model. Cohort 2: 348 participants (MCI n = 174; CN n = 174) with MRI and functional MRI. Cohort 3: overlapping cases from cohorts 1 and 2 (MCI n = 70; CN n = 70). Cohort 4: 336 participants (MCI-converters n = 168; MCI-stable n = 168) with FDG-PET from cohort 1. The one/two-channel models' inputs were T1-weighted MRI and/or amplitude of low-frequency fluctuations images, with classification metrics evaluated through 10-fold cross-validation.
Results: The FDG-PET model achieved 88.02%±3.82 accuracy for MCI versus CN classification, with 88.70%±4.70 sensitivity and 87.14%±5.03 specificity. Neither MRI model outperformed the FDG-PET model, as the highest MRI-based accuracy was 76.86%±1.95. The FDG-PET model achieved 63.23%±4.68 accuracy in classifying MCI-converters versus MCI-stable.
Conclusions: FDG-PET images produced the highest accuracy in classifying MCI versus CN. While MRI-based approaches were inferior to FDG-PET, multi-contrast MRI still offers value for neurodegeneration classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/13872877241302493 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!