AI Article Synopsis

  • - The study investigates the use of BET-loaded liposomal nanocarriers (LPN) as a potential new treatment for Alzheimer’s disease (AD) due to the low effectiveness of betanin (BET) from previous research.
  • - In an experiment with 48 male Wistar rats, those treated with BET LPN showed significant improvements in memory and reduced brain degeneration compared to rats receiving other forms of BET or a control treatment.
  • - BET LPN treatment not only improved cognitive function but also targeted specific biomarkers and pathways associated with AD, suggesting that it may be a more effective method than traditional oral BET for combating the disease.

Article Abstract

Betanin (BET) has been studied for its therapeutic benefits in various diseases, but its low bioavailability and uncertain brain penetration limit its efficacy. Accordingly, this study aimed to explore BET-loaded liposomal nanocarriers (LPN) as a novel treatment for Alzheimer's disease (AD), focusing on the triggering receptor expressed on myeloid cells 2 (TREM2)/DNAX-activating protein of 12 kDa (DAP12) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways implicated in AD. In an AlCl-induced AD rat model, 48 male Wistar rats were divided into four groups: control, AlCl (50 mg/kg, intraperitoneal), AlCl+BET (100 mg/kg, per os), and AlCl+BET LPN (25 mg/kg, intranasally), with treatments administered for 28 days. Morris water maze test and histopathological examination showed that BET LPN-treated rats had improved spatial and learning memory and less hippocampal and cortical degeneration compared with the AlCl and oral BET groups. Mechanistically, BET LPN treatment corrected AD biomarkers, increased miR-132 and ADAM10 expression, and reduced oxidative stress, inflammation, and apoptosis. Additionally, BET LPN treatment suppressed the expression of TREM2, DAP12, ERK1/2, and mitogen-activated protein kinase 1/2 (MEK1/2), showing greater improvement than oral BET. These findings suggest that BET LPN enhances cognitive function and neuroprotection in AD by modulating miR-132 and ADAM10 and inhibiting ERK1/2 and TREM2/DAP12 pathways, providing a more effective treatment compared with traditional oral BET administration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.202400641DOI Listing

Publication Analysis

Top Keywords

oral bet
12
bet lpn
12
liposomal nanocarriers
8
alzheimer's disease
8
cognitive function
8
bet
8
kinase 1/2
8
lpn treatment
8
mir-132 adam10
8
lpn
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!