AI Article Synopsis

  • - Sensory capabilities are essential for cellular interaction, leading to the development of sensory globular protein vesicles (GPVs) made from recombinant fusion proteins that self-assemble in water.
  • - GPVs functionally interact with the signaling molecule rapamycin to form a FKBP-FRB ternary complex, which incorporates a genetically fused fluorescent protein and leucine zipper for vesicle assembly.
  • - The study reveals that GPVs can aggregate in response to rapamycin in a time- and concentration-dependent way, providing insights into their potential use as models for mimicking key cellular processes in synthetic biology.

Article Abstract

Sensory capabilities are crucial for cells to interact with their environment. To mimic these functions in synthetic cells, we developed sensory globular protein vesicles (GPVs) made entirely of recombinant fusion proteins through self-assembly under aqueous conditions. GPVs demonstrate sensory functions via the formation of the FKBP-FRB ternary complex with the signaling molecule, rapamycin. The sensory domain of FKBP or FRB was genetically fused to a fluorescent protein and leucine zipper, which self-assemble into vesicles by forming amphiphilic building blocks through high-affinity binding to a counter leucine zipper fused to an elastin-like polypeptide (ELP) above its lower critical solution temperature. We observed intervesicle aggregation in a time- and concentration-dependent manner upon rapamycin binding, confirmed by colocalization studies and statistical analysis. This system enhances our understanding of protein vesicle functionality for sensing and offers a basis for exploring GPVs as models to replicate key cellular processes in synthetic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.4c01095DOI Listing

Publication Analysis

Top Keywords

recombinant fusion
8
fusion proteins
8
synthetic cells
8
leucine zipper
8
proteins embedded
4
embedded sensing
4
sensing functions
4
functions versatile
4
versatile tools
4
tools protocell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!