A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel nomogram prediction model for postoperative atrial fibrillation in patients undergoing laparotomy. | LitMetric

Background: Postoperative atrial fibrillation (POAF) is an ordinary complication of surgery, particularly cardiac surgery. It significantly increases in-hospital mortality and costs. This study aimed to establish a nomogram prediction model for POAF in patients undergoing laparotomy. The model is expected to identify individuals at a high risk of POAF before surgery in clinical practice.

Methods: A retrospective observational case-control study involving 230 adult patients (60 patients with POAF, 120 patients in the control group, and 50 patients in the validation group) who underwent laparotomy was retrieved from two hospitals. Independent risk variables for POAF were investigated using logistic regression and the least absolute shrinkage and selection operator (LASSO) regression analysis. Subsequently, a nomogram model for POAF was constructed by multivariate logistic regression equations. The prediction model was internally validated by bootstrap method and externally validated with the validation group data. To assess the discriminative ability of the nomogram model, a receiver operating characteristic (ROC) curve was generated and a calibration curve was employed to assess the concentricity between the model's probability curve and the ideal curve. Subsequently, decision curve analysis (DCA) was performed to assess the clinical effectiveness of the model.

Results: C-reactive protein (CRP), lymphocyte-to-monocyte ratio(LMR), blood urea nitrogen (BUN), and Macruz index were independent risk variables for POAF in patients who underwent laparotomy. A user-friendly and efficient prediction nomogram was visualized using R software. This nomogram exhibited strong discrimination, as evidenced by an area under the ROC curve (AUC) of 0.90 (95% CI 0.8509-0.9488) for the training set, 0.86 (95% CI 0.7142-1) for the test set, and 0.9792 (95% CI 0.9293-1) for the validation group data. The C-index of the bootstrap nomogram model was 0.8998. Furthermore, DCA revealed that this model displayed excellent fit and calibration, as well as positive net benefits.

Conclusions: A nomogram prediction model was constructed for POAF in patients who underwent abdominal surgery. The nomogram prediction model is expected to identify individuals at high risk of POAF in clinical practice for prophylactic therapeutic intervention prior to surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613476PMC
http://dx.doi.org/10.1186/s13741-024-00472-xDOI Listing

Publication Analysis

Top Keywords

prediction model
20
nomogram prediction
16
poaf patients
12
validation group
12
nomogram model
12
model
10
poaf
9
postoperative atrial
8
atrial fibrillation
8
patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!