Multicellular organisms control environmental interactions through specialized barriers in specific cell types. A conserved barrier in plant roots is the endodermal Casparian strip (CS), a ring-like structure made of polymerized lignin that seals the endodermal apoplastic space. Most angiosperms have another root cell type, the exodermis, that is reported to form a barrier. Our understanding of exodermal developmental and molecular regulation and function is limited as this cell type is absent from Arabidopsis thaliana. We demonstrate that in tomato (Solanum lycopersicum), the exodermis does not form a CS. Instead, it forms a polar lignin cap (PLC) with equivalent barrier function to the endodermal CS but distinct genetic control. Repression of the exodermal PLC in inner cortical layers is conferred by the SlSCZ and SlEXO1 transcription factors, and these two factors genetically interact to control its polar deposition. Several target genes that act downstream of SlSCZ and SlEXO1 in the exodermis are identified. Although the exodermis and endodermis produce barriers that restrict mineral ion uptake, the exodermal PLC is unable to fully compensate for the lack of a CS. The presence of distinct lignin structures acting as apoplastic barriers has exciting implications for a root's response to abiotic and biotic stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41477-024-01864-z | DOI Listing |
Neoplasia
December 2024
Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:
Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.
View Article and Find Full Text PDFPLoS One
December 2024
Servier, Research & Development, Gif-sur-Yvette, France.
Improving the selectivity and effectiveness of drugs represents a crucial issue for future therapeutic developments in immuno-oncology. Traditional bulk transcriptomics faces limitations in this context for the early phase of target discovery as resulting gene expression levels represent the average measure from multiple cell populations. Alternatively, single cell RNA sequencing can dive into unique cell populations transcriptome, facilitating the identification of specific targets.
View Article and Find Full Text PDFPLoS One
December 2024
Embrapa Southeast Livestock, São Carlos, Brazil.
Different sheep breeds show distinct phenotypic plasticity in fat deposition in the tails. The genetic background underlying fat deposition in the tail of sheep is complex, multifactorial, and may involve allele-specific expression (ASE) mechanism to modulate allelic expression. ASE is a common phenomenon in mammals and refers to allelic imbalanced expression modified by cis-regulatory genetic variants that can be observed at heterozygous loci.
View Article and Find Full Text PDFPLoS One
December 2024
International Vaccine Institute, Seoul, Republic of Korea.
The involvement of Toll-like receptor 2 (TLR2) in leptospirosis is poorly understood. Our systematic review examined its role across in-vitro, in-vivo, ex-vivo, and human studies. Original articles published in English up to January 2024, exploring the role of TLR2 during leptospirosis, were selected from databases including PubMed, Web of Science, Scopus, Trip, and Google Scholar.
View Article and Find Full Text PDFAnal Chem
December 2024
University of Science and Technology of China, Hefei, Anhui 230026, China.
Environmental mechanical forces, such as cell membrane stress, cell extrusion, and stretch, have been proven to affect cell growth and migration. Piezo1, a mechanosensitive channel protein, responds directly to endogenous or exogenous mechanical stimuli. Here, we explored the Piezo1 distribution and microfilament morphological changes induced by mechanical forces in the tumor and normal cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!