AI Article Synopsis

  • * Most proteins in the cristae membrane are made in the nucleus, and they need to cross crista junctions to function properly, assisted by the mitochondrial protein import system.
  • * The study identifies a protein called Mar26 that plays a key role in the assembly of the cytochrome bc complex (complex III) by connecting assembly intermediates to a structure called MICOS, which helps coordinate the assembly and stability of respiratory chain components.

Article Abstract

The boundary and cristae domains of the mitochondrial inner membrane are connected by crista junctions. Most cristae membrane proteins are nuclear-encoded and inserted by the mitochondrial protein import machinery into the inner boundary membrane. Thus, they must overcome the diffusion barrier imposed by crista junctions to reach their final location. Here, we show that respiratory chain complexes and assembly intermediates are physically connected to the mitochondrial contact site and cristae organizing system (MICOS) that is essential for the formation and stability of crista junctions. We identify the inner membrane protein Mar26 (Fmp10) as a determinant in the biogenesis of the cytochrome bc complex (complex III). Mar26 couples a Rieske Fe/S protein-containing assembly intermediate to MICOS. Our data indicate that Mar26 maintains an assembly-competent Rip1 pool at crista junctions where complex III maturation likely occurs. MICOS facilitates efficient Rip1 assembly by recruiting complex III assembly intermediates to crista junctions. We propose that MICOS, via interaction with assembly factors such as Mar26, contributes to the spatial and temporal coordination of respiratory chain biogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s44319-024-00336-xDOI Listing

Publication Analysis

Top Keywords

crista junctions
20
complex iii
12
cytochrome complex
8
inner membrane
8
respiratory chain
8
assembly intermediates
8
assembly
6
complex
5
micos
5
crista
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!