The unique potential of nanomedicine to address challenging health issues is rapidly advancing the field, leading to the generation of more effective products. However, these complex systems often pose several challenges with respect to their design for specific functionality, scalable manufacturing, characterization, quality control, and clinical translation. In this regard, the application of artificial intelligence (AI) and machine learning (ML) approaches can enable faster and more accurate data assessment, identifying trends and predicting outcomes, leading to efficient nanomedicine product development. This perspective paper discusses the potential of AI and ML in nanomedicine product development with a focus on their applications in discovery, assessment, manufacturing, and clinical trials. The potential limitations of AI and ML approaches in nanomedicine product development are also covered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-024-03798-9 | DOI Listing |
Sci Rep
January 2025
School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
In this work, we synthesize a quinoline-based heptamethine cyanine, QuCy7, with sulfonate groups to enhance water solubility. This dye demonstrates exceptional near-infrared absorption beyond 750 nm, accompanied by photothermal properties but low photostability. Encapsulating QyCy7 with polyethylene glycol to form nanopolymer, QuCy7@mPEG NPs, addresses the issue of its photoinstability.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia.
In this work, cerium dioxide nanostructures were synthesized in an easy sonochemical way. CeO nanoparticles have received much attention in nanotechnology. CeONPs, exhibit biomimetic properties depending on their size, ratio of valency on their surface, and the ambient physico-chemical properties.
View Article and Find Full Text PDFMater Today Bio
February 2025
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Combining photothermal and chemotherapy using single nanoplatform is an emerging direction in cancer nanomedicine. Herein, a magnetic field (MF) induced combination of chemo/photothermal therapy is demonstrated using FeO@mSiO@Au core@shell@satellites nanoparticles (NPs) loaded with chemotherapeutic drug doxorubicin (DOX), both and An application of an external MF to the NPs dispersion causes magnetophoretic movement and aggregation of the NPs. While the synthesized NPs only slightly absorb light at ∼800 nm, their aggregation results in a significant near infrared (NIR) absorption associated with plasmon resonance coupling between the Au satellites in the NPs aggregates.
View Article and Find Full Text PDFRSC Adv
January 2025
State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China +86-13708302390.
Nanomedicine enables precision-targeted therapies through a non-invasive approach, and nanoparticles may be biologically affected during their colonization . Ensuring the efficient expression of their performance , while ensuring biosafety, is of great significance. Previous studies have employed genetically engineered following entry as a genetically engineered targeting synergist, to enhance the effect of focused ultrasound ablation by exploiting its targeted colonization of tumor tissue.
View Article and Find Full Text PDFJ Egypt Natl Canc Inst
January 2025
SMART, Sunshine Hospitals, Secunderabad, Telangana, India.
Introduction: Silver nanoparticles (AgNPs) derived from natural sources have garnered significant attention due to their unique properties and eco-friendly production methods. With lung cancer remaining a major global health issue, there is a continuous need for novel and effective therapeutic approaches beyond conventional treatments such as chemotherapy, immunotherapy, and targeted therapies.
Objective: This study aims to synthesize AgNPs using plant extracts from Gymnema sylvestre, Moringa oleifera, and Azadirachta indica and to evaluate their anticancer activity, particularly their effects on gene expression in A549 lung cancer cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!