Probabilistic regression for autonomous terrain relative navigation via multi-modal feature learning.

Sci Rep

Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, 12180, NY, USA.

Published: December 2024

AI Article Synopsis

  • The text discusses the need for improved autonomous navigation algorithms for planetary landings, particularly during the powered descent phase, due to the increasing complexity of space missions.
  • It highlights a new approach using CNN-based Deep Learning models that utilize classification probabilities to enhance the position estimation of lander spacecraft based on image and depth data from onboard sensors.
  • The effectiveness of this new navigation method is validated through Monte Carlo analysis, indicating its potential for real-world applications in space exploration.

Article Abstract

The extension of human spaceflight across an ever-expanding domain, in conjunction with intricate mission architectures demands a paradigm shift in autonomous navigation algorithms, especially for the powered descent phase of planetary landing. Deep learning architectures have previously been explored to perform low-dimensional localization with limited success. Due to the expectations regarding novel algorithms in the context of real missions, the proposed approaches must be rigorously evaluated in extraneous scenarios and demonstrate sufficient robustness. In the current work, a novel formulation is proposed to train CNN-based Deep Learning (DL) models in a multi-layer cascading architecture and utilize the resulting classification probabilities as regression weights to estimate the position of the lander spacecraft. The approach leverages image intensity and depth data provided by multiple sensors on board to accurately determine the spacecraft's location relative to the observed terrain at a specific altitude. Navigation performance is validated through Monte Carlo analysis, demonstrating the efficacy of the proposed DL architecture and the subsequent state-estimation framework across several simulated scenarios. It shows tremendous promise in extending the multi-modal feature learning approach to realistic missions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612231PMC
http://dx.doi.org/10.1038/s41598-024-81377-zDOI Listing

Publication Analysis

Top Keywords

multi-modal feature
8
feature learning
8
deep learning
8
probabilistic regression
4
regression autonomous
4
autonomous terrain
4
terrain relative
4
relative navigation
4
navigation multi-modal
4
learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!