Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antimicrobial peptides (AMPs), derived from a variety of proteins such as ribosomal proteins, play a pivotal role in the innate immune system. However, information regarding ribosomal protein-derived AMPs is currently limited and their mechanisms of action remain poorly defined. Here we identified and characterized the antibacterial activity of amphioxus RPL27 (BjRPL27) and its core functional region located at residues 51-72 (termed BjRPL27). We found that BjRPL27 expression was upregulated in the hepatic caecum following bacterial infection. Both the recombinant protein rBjRPL27 and the synthetic peptide BjRPL27 effectively killed the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Aeromonas hydrophila via a combined action of disrupting cell membrane integrity, inducing membrane depolarization, and increasing intracellular reactive oxygen species (ROS) production. Additionally, the sequence of BjRPL27 was highly conserved among all eukaryotic RPL27s, implying an ancient origin for the antibacterial activity of the RPL27 family. In vivo assays showed that BjRPL27 not only efficiently protected zebrafish from A. hydrophila infection, but also killed the bacterium S. aureus on the skin wound of rats. Furthermore, neither BjRPL27 nor BjRPL27 exhibited hemolytic activity towards human red blood cells, making them promising lead molecules for designing novel AMPs. These findings highlight the potential of BjRPL27 as a novel AMP with selective bactericidal properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2024.110063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!