Enhanced adsorption of tetracycline by lanthanum/iron co-modified rice shell biochar: Synthesis, adsorption performance, site energy distribution and regeneration.

Environ Res

Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi Province, 710021, China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, China; Key Laboratory of Cultivated Land Quality Monitoring and Conservation, Ministry of Agriculture and Rural Affairs, China.

Published: November 2024

AI Article Synopsis

  • A novel biochar, La/Fe@RSBC, created from rice shells, was studied for its ability to adsorb tetracycline (TC) from water, achieving a maximum adsorption capacity of 414.84 mg/g, significantly higher than other variants.
  • The adsorption mechanisms for TC included hydrogen bonding, surface complexation, and electrostatic attraction, with the process being spontaneous and endothermic, influenced by factors like composition, pH, and temperature.
  • La/Fe@RSBC showed potential for real-world applications in treating swine wastewater, and its effectiveness could be enhanced through a combined advanced oxidation process to regenerate the biochar after initial use.

Article Abstract

A novel La/Fe co-modified biochar derived from rice shell (La/Fe@RSBC) was prepared and employed in tetracycline (TC) adsorption from water. The characterizations, kinetics, isotherms, thermodynamics, and site energy distribution (SED) were studied to investigate TC adsorption behaviors. La/Fe@RSBC exhibited the maximum adsorption capacity towards TC of 414.84 mg/g, which was 1.27-2.41 folds than that of RSBC, La@RSBC, and Fe@RSBC. The possible adsorption mechanism of TC dominantly involved H bond, surface complexation, pore filling, electrostatic attraction, and π-π electron donor-acceptor (EDA) interaction. Moreover, TC adsorption behavior was spontaneous and endothermic, significantly related to the compositions and dosage of La/Fe@RSBC, initial pH, and solution temperature. Additionally, SED results promulgated that co-loaded Fe and La synergistically enhanced the affinity of biochar and provided more adsorption sites for TC at a higher temperature. The residual TC after regeneration by ethanol dominantly inhibited the third stage of adsorption, that is, the adsorption of TC on the inner surface of La/Fe@RSBC in next run. Importantly, HO combined with La/Fe@RSBC-mediated advanced oxidation process could effectively clear residual TC after ethanol desorption, which obviously improved the service life of La/Fe@RSBC. In addition, the swine wastewater treatment demonstrated that La/Fe@RSBC had a promising potential application in practical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.120489DOI Listing

Publication Analysis

Top Keywords

adsorption
9
rice shell
8
site energy
8
energy distribution
8
la/fe@rsbc
6
enhanced adsorption
4
adsorption tetracycline
4
tetracycline lanthanum/iron
4
lanthanum/iron co-modified
4
co-modified rice
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!