Patient-derived tumor organoids (PDTOs) represent a significant advancement in cancer research and personalized medicine. These organoids, derived from various cancer types, have shown the ability to retain the genetic and molecular characteristics of the original tumors, allowing for the detailed study of tumor biology and drug responses on an individual basis. The success rates of establishing PDTOs vary widely and are influenced by factors such as cancer type, tissue quality, and media composition. Furthermore, the dynamic nature of organoid cultures may also lead to unique molecular characteristics that deviate from the original tumors, affecting their interpretation in clinical settings without the implementation of rigorous validation and establishment of standardized protocols. Recent studies have supported the correlation between PDTOs and the corresponding patient response. Although these studies involved a small number of patients, they promoted the integration of PDTOs in observational and interventional clinical trials to advance translational cancer therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647637 | PMC |
http://dx.doi.org/10.1016/j.tranon.2024.102226 | DOI Listing |
BioDrugs
January 2025
Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.
View Article and Find Full Text PDFBackground: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.
Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.
J Immunother Cancer
January 2025
Internal Medicine I, Ulm University Hospital, Ulm, Germany
Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
January 2025
Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2RX, UK. Electronic address:
Soft tissue sarcomas (STS) represent a large group of rare and ultra-rare tumors distinguished by unique morphological, molecular and clinical features. Patients with such rare cancers are generally underrepresented in clinical trials which has limited the introduction of new treatment options and subsequent improvement of patient outcomes. Preclinical models of STS that recapitulate the human disease can aid progress in identifying new effective treatments.
View Article and Find Full Text PDFTransl Oncol
January 2025
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan. Electronic address:
Colorectal cancer (CRC) is closely linked to obesity, a condition that significantly impacts tumor progression and therapeutic resistance. Although cetuximab, an EGFR-targeting monoclonal antibody, is a cornerstone in metastatic CRC treatment, resistance often emerges, leading to poor outcomes. This study investigated the role of drug-tolerant persister (DTP) cells and their metabolic interactions within the tumor microenvironment (TME) in cetuximab resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!