is related to the bacterial RecA protein and is best known for its role in homologous recombination-mediated repair of DNA damage. Here, we report an unexpected function of in the maintenance methylation of genomic DNA, a function that is separable from its role in homologous recombination. First, it acts as an inhibitor of the E3 ubiquitin ligase UHRF1. Deficiency in causes excessive ubiquitination and degradation of the DNA methyltransferase DNMT1, leading to the loss of global DNA methylation. Second, RAD51 helps UHRF1 to monoubiquitinate histone H3 to generate DNMT1 recruiting signal. It binds H3 directly, enabling UHRF1 to bind and ubiquitinate H3 more readily. Disrupting the interaction between RAD51 and H3 diminishes DNMT1 recruitment and the failure of maintenance methylation of genomic DNA. Thus, RAD51 dually regulates UHRF1. These results establish RAD51 as a guardian of the integrity of both the genome and the epigenome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648659 | PMC |
http://dx.doi.org/10.1073/pnas.2410119121 | DOI Listing |
Adv Exp Med Biol
January 2025
Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.
View Article and Find Full Text PDFMol Ecol Resour
January 2025
Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China.
Pardosa spiders, belonging to the wolf spider family Lycosidae, play a vital role in maintaining the health of forest and agricultural ecosystems due to their function in pest control. This study presents chromosome-level genome assemblies for two allied Pardosa species, P. laura and P.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom.
Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
Aging adversely affects the self-renewal and differentiation capabilities of stem cells, which impairs tissue regeneration as well as the homeostasis. Epigenetic mechanisms, specifically DNA methylation, play a key role in the maintenance of pluripotency in stem cells and regulation of pluripotency-related gene expression. Age-related modifications in methylation patterns could influence the expression of genes critical for stem cell potency maintenance, including transcription factors Nanog and Sox2.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
DNA methylation, catalyzed by DNA methyltransferases (DNMT), plays pivotal role in regulating embryonic development, gene expression, adaption to environmental stress, and maintaining genome integrity. DNMT family consists of DNMT1, DNMT3A, DNMT3B, and the enzymatically inactive DNMT3L. DNMT3A and DNMT3B establish novel methylation patterns maintained by DNMT1 during replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!